• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanisms of Microwave Loss Tangent in High Performance Dielectric Materials

January 2013 (has links)
abstract: The mechanism of loss in high performance microwave dielectrics with complex perovskite structure, including Ba(Zn1/3Ta2/3)O3, Ba(Cd1/3Ta2/3)O3, ZrTiO4-ZnNb2O6, Ba(Zn1/3Nb2/3)O3, and BaTi4O9-BaZn2Ti4O11, has been investigated. We studied materials synthesized in our own lab and from commercial vendors. Then the measured loss tangent was correlated to the optical, structural, and electrical properties of the material. To accurately and quantitatively determine the microwave loss and Electron Paramagnetic Resonance (EPR) spectra as a function of temperature and magnetic field, we developed parallel plate resonator (PPR) and dielectric resonator (DR) techniques. Our studies found a marked increase in the loss at low temperatures is found in materials containing transition metal with unpaired d-electrons as a result of resonant spin excitations in isolated atoms (light doping) or exchange coupled clusters (moderate to high doping) ; a mechanism that differs from the usual suspects. The loss tangent can be drastically reduced by applying static magnetic fields. Our measurements also show that this mechanism significantly contributes to room temperature loss, but does not dominate. In order to study the electronic structure of these materials, we grew single crystal thin film dielectrics for spectroscopic studies, including angular resolved photoemission spectroscopy (ARPES) experiment. We have synthesized stoichiometric Ba(Cd1/3Ta2/3)O3 [BCT] (100) dielectric thin films on MgO (100) substrates using Pulsed Laser Deposition. Over 99% of the BCT film was found to be epitaxial when grown with an elevated substrate temperature of 635 C, an enhanced oxygen pressures of 53 Pa and a Cd-enriched BCT target with a 1 mol BCT: 1.5 mol CdO composition. Analysis of ultra violet optical absorption results indicate that BCT has a bandgap of 4.9 eV. / Dissertation/Thesis / Ph.D. Materials Science and Engineering 2013
2

Dielectric Titanate Ceramics : Contributions From Uncommon Substituents And Microstructural Modifications

Jayanthi, S 10 1900 (has links)
This thesis deals with the investigations on the dielectric properties of polycrystalline ceramics having uncommon substitutions in barium titanate and other related phases of BaTiO3-CaTiO3, MgTiO3-CaTiO3 and MgTiO3-BaTiO3 systems. After presenting a brief introduction on the ceramic materials studied in terms of their crystal structures, electrical properties, nonstoichiometry and microstructural characteristics. The thesis describes the synthesis of the ceramics and the methodology of different techniques utilized in characterizing the samples. Barium calcium titanate was synthesized through novel wet chemical techniques and the dielectric properties of calcium substituted barium titanate do not reveal multi-site occupancy whereas they are predominantly influenced by the A/B cationic ratio. The role of transition metals of the 3d series from vanadium (Z=23) to zinc (Z=30) in modifying the crystallographic phase content, microstructure and the dielectric properties of BaTiO3 ceramics containing 10 at% impurities were studied. All the transition metals brought about the phase conversion to hexagonal BaTiO3, although no systematics could be arrived at relating the hexagonal content to the 3d electronic configuration of the impurities. The relaxor dielectrics arising from the titanate solid solution with uncommon substitution and its interconversion to normal ferroelectrics is studied. The effects of cationic substitutions of iron and niobium for titanium in BaTiO3 pervoskite lattice in crystal symmetry and dielectric properties were investigated. The above dielectric characteristics are comparable in a converse way to those of the well known Pb(Mg1/3Nb2/3)O3-PbTiO3 system wherein the relaxor behaviour occurs within the lower lead titanate compositional limits. The modification in -T characteristics of positive temperature coefficient in resistance (PTCR) by the addition of segregative additives such as B2O3, Al2O3 etc in BaTiO3 and its conversion to grain boundary layer capacitance is studied. The presence of Al-related hole centers at the grain boundary regions resulted in charge redistribution across the modified phase transition temperatures due to symmetry-related vibronic interactions, which result in broad PTCR characteristics extending to higher temperatures. The processing of high permittivity ceramics by the manipulation of microstructural features in semiconducting BaTiO3 is studied wherein the grain boundary layer effect superimposed with the contributions from the barrier layers formed during electroding related to microstructure is proposed to be responsible for the unusual high permittivity in semiconducting BaTiO3. The influence of Mg2+ as a substituent in modifying the crystallographic phase contents, microstructure and the dielectric properties of (Ba1-xMgx)TiO3 ceramics, (x ranging from zero to 1.0 ) is studied. The results point to the dual occupancy of Mg2+ both in A and B sublattice and the role of oxygen vacancy as well as (Ti3+ –VO) defects in stabilization of hexagonal phase to lower temperatures. The microwave dielectrics of the BaMg6Ti6O19 phase formed in the compositional range of x=0.4 to 0.7 was investigated for suitable application in microwave dielectrics. Extensive miscibility between the ilmenite-type MgTiO3 and perovskite-type CaTiO3 over a wide compositional range is brought about by the simultaneous equivalent substitution of Al3+ and La3+. The resulting Mg1-(x+y)CaxLay)(Ti1-yAly)O3 ceramics exhibit improved microwave dielectric properties by way of high permittivity, low TCK and high quality factor. The elemental distribution reveals the complexity in the Mg/Ca distribution and its correlation with the solid state miscibility as well as dielectric properties. Microwave dielectric property of Mg4Al2Ti9O25 which is detected as secondary phase is studied in detail.
3

MoO₃, PZ29 and TiO₂ based ultra-low fabrication temperature glass-ceramics for future microelectronic devices

Varghese, J. (Jobin) 02 April 2019 (has links)
Abstract This thesis describes a detailed investigation of new glass 10Li₂O−10Na₂O−20K₂O−60MoO₃ (LNKM), ceramic (α-MoO₃) and ceramic-commercial glass (PZ29-GO17, rutile TiO₂-GO17) composites to satisfy the future requirements for ultra-low fabrication temperature materials and their associated processes. The initial part of the thesis is devoted to the development of the LNKM glass by a glass-melting and quenching process, followed by an investigation into its structural, microstructural and microwave dielectric properties. The prepared glass had ultra-low glass transition and melting temperatures of 198 and 350 °C, respectively. The glass pellet heat-treated at 300 °C had a relative permittivity (εr) of 4.85 and a dielectric loss (tan δ) of 0.0009 at 9.9 GHz. The temperature dependence of the relative permittivity was (τε) 291 ppm/°C. Another part of the work concerns α-MoO₃ ceramic, its preparation by uniaxial pressing and sintering at 650 °C followed by an investigation of its structural, microstructural, thermal and microwave dielectric properties. It had an εr of 6.6, tan δ of 0.00013 (at 9.9 GHz) and τε of 140 ppm/°C. In addition to this, a functional ultra-low temperature co-fired composite was developed based on commercial PZ29 and 50 wt.% of GO17 glass followed by tape casting and co-firing with Ag at 450 °C. The average values of the piezoelectric (d₃₃) and voltage (g₃₃) coefficients were 17 pC/N and 30 mV/N, respectively. The sintered sample had an average CTE value of 6.9 ppm/°C measured in the temperature range of 100–300 °C. The εr and tan δ of the sintered substrates were 57.8 and 0.05 at 2.4 GHz, respectively. Additionally, a new ceramic-glass composite was developed using rutile TiO₂-GO17, and co-fired with Ag at 400 °C. It had an average CTE value of 8.3 ppm/°C measured in the temperature range of 100–300 °C. This composite substrate showed εr of 15.5 and tan δ 0.003, at 9.9 GHz. Moreover, it also had τε of -400 ppm/°C at 9.9 GHz measured in the temperature range of −40 to 80 °C. The findings of the thesis reveal the feasibility of the ultra-low temperature co-fired ceramic (ULTCC) technology for high-frequency telecommunication devices as well as for electronics packages. Additionally, a first step to develop functional ULTCC has been taken. / Tiivistelmä Tässä väitöskirjassa kuvataan uuden lasin 10Li₂O−10Na₂O−20K₂O−60MoO₃ (LNKM), keraamin (α-MoO₃) sekä keraami-lasi (PZ29-GO17, rutiili TiO₂-GO17) komposiittien tutkimustulokset, jotka mahdollistavat tulevaisuuden sähkökeraamisten materiaalien ja komponenttien valmistuksen ultra-matalissa valmistuslämpötiloissa. Väitöskirjan alkuosa keskittyy LNKM lasin kehitykseen lasin sulatus- ja karkaisuprosessilla, sekä tämän materiaalin mikrorakenteen sekä mikroaaltoalueen dielektristen ominaisuuksien tarkasteluun. Valmistetulla lasilla oli ultra-matala lasittumislämpötila 198 °C sekä sulamislämpötila 350 °C. Lasipelletin, joka lämpökäsiteltiin 300 °C:ssa, suhteellinen permittiivisyys (εr) oli 4,85 ja dielektriset häviöt (tan δ) 0,0009 9,9 GHz taajuudella. Suhteellisen permittiivisyyden lämpötilariippuvuus (τε) oli 291 ppm/°C. Toinen osa työtä käsittelee α-MoO₃ keraamia, josta valmistettiin näytteet mikrorakenne ja mikroaaltoalueen dielektristen ominaisuuksien tutkimuksiin aksiaalisella puristuksella ja sintraamalla 650 °C:ssa. Valmistetun materiaalin suhteellinen permittiivisyys oli 6,6, häviöt 0,00013 (9,9 GHz:ssa) ja permittiivisyyden lämpötilariippuvuus 140 ppm/°C. Näiden lisäksi kehitettiin toiminnallinen ultra-matalan lämpötilan yhteissintrattu komposiitti perustuen kaupalliseen pietsosähköiseen keraamiin (PZ29) ja lasiin (GO17). Komposiitista valmistetiin monikerrosrakenne nauhavalulla ja yhteissintraamalla hopeaelektrodien kanssa 450 °C:ssa. Keskimääräiset arvot pietsosähköiselle varausvakiolle (d₃₃) sekä jännitevakiolle (g₃₃) olivat 17 pC/N ja 30 mV/N. Sintratun näytteen keskimääräinen lämpölaajenemiskerroin oli 8,3 ppm/°C lämpötila-alueella 100–300 °C. Tämän komposiittisubstraatin suhteellinen permittiivisyys oli 15,5 ja häviötangentti 0,003 9,9 GHz:n taajuudella. Lisäksi suhteellisen permittiivisyyden lämpötilariippuvuus oli -400 ppm/°C samalla 9,9 GHz:n taajuudella, kun lämpötilan mittausalue oli −40–80 °C. Tämän väitöstyön tulokset osoittavat ultra-matalan lämpötilan yhteissintrattavan keraamiteknologian (ULTCC) soveltuvuuden korkean taajuuden tietoliikennesovelluksiin ja elektroniikan pakkausteknologiaan. Lisäksi työssä on otettu ensimmäiset askeleet funktionaalisten ULTCC materiaalien kehittämiseksi.
4

Chemical Characterisation Of The Surfaces And Interfaces Of Barium Titanate And Related Electronic Ceramics

Kumar, Sanjiv 01 1900 (has links)
This thesis deals with the investigations on the atomic composition, chemical surface states and microstructural features of barium titanate and other electronic ceramics namely barium polytitantes, calcium manganites and magnesium calcium titanate by surface analytical techniques. After presenting a brief introduction on the ceramic materials studied in terms of their crystal structures, electrical properties, nonstoichiometry and interfacial characteristics, the thesis describes the synthesis of the ceramics and the methodology of the different surface analytical techniques utilized such as backscattering spectrometry (BS), an ion beam analysis (IBA) technique, X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDS). The XPS investigations on the chemical surface states of polycrystalline barium titanate having well-defined electrical characteristics reveal the prevalence of Ba in two distinct chemical environments : the one corresponding to the lower binding energy is related to the dielectric while the other having higher binding energy is correlated to semiconducting properties of the ceramics. Processes such as abrasion or polishing make the surfaces more reactive and susceptible to atmospheric contamination. Sputter cleaning causes surface modification leading to changes in the Ba (3d) and Ti (2p) spectra. Studies on the surface atomic composition by BS and microstructural features of doped barium titanate ceramics reveal their interfacial characteristics in terms segregation of dopants or metal ion constituents. Surfaces of these ceramics exhibit cationic as well as anionic nonstoichiometry depending on the processing steps involved. Ceramics synthesized by oxalate precursor route are Ti-rich while those prepared by gel-to-crystallite method are Ba-rich. These are correlated to the chemical processes and background impurities which in turn control the microstructures. Barium titanate substitued with > 1 at. % Mn are deficient in oxygen and exist as the hexagonal polymorph. Acceptors segregate at the grain boundaries accompanied by the enrichment of Ti leading to PTCR or GBLC characteristics. The oxygen nonstoichiometry prevailing in the surface regions of differently processed calcium manganites is investigated by way of depth profile measurements involving 16O(a,a) 16O resonant scattering. These studies reveal extensive compositional heterogeneity across the surface layers particularly in the manganite specimens annealed in lower po2 leading to the stabilization of brownmillerite phase. Two of the microwave dielectric ceramics namely dibarium nona-titanate and barium tetra-titanate with suitable variations in Ba:Ti ratios have been synthesized by the carbonate-gel precipitation. The corresponding dense ceramics have high permittivity (~ 52) and low temperature coefficient of permittivity (TCK ~ 5 ppm /0C). Extensive miscibility between the ilmenite-type MgTiO3 and perovskite-type CaTiO3 over a wide compositional range is brought about by the simultaneous equivalent substitution of Al3+ + La3+. The resulting (Mg1-(x+y)CaxLay)(Ti1-yAly)O3 ceramics exhibit improved microwave dielectric properties by way of high permittivity, low TCK and high quality factor. The microarea elemental distribution and chemical surface state studies reveal the complexity in the Mg/Ca distribution and its correlation with the solid state miscibility as well as dielectric properties. The discontinuous changes in the local site symmetry of the cationic substituents in these ceramics have been investigated by the photoluminescence spectra using Pr3+ as the emission probe.
5

Mechanisms Responsible for Microwave Properties in High Performance Dielectric Materials

January 2016 (has links)
abstract: Microwave properties of low-loss commercial dielectric materials are optimized by adding transition-metal dopants or alloying agents (i.e. Ni, Co, Mn) to tune the temperature coefficient of resonant frequency (τf) to zero. This occurs as a result of the temperature dependence of dielectric constant offsetting the thermal expansion. At cryogenic temperatures, the microwave loss in these dielectric materials is dominated by electron paramagnetic resonance (EPR) loss, which results from the spin-excitations of d-shell electron spins in exchange-coupled clusters. We show that the origin of the observed magnetically-induced shifts in the dielectric resonator frequency originates from the same mechanism, as described by the Kramers-Kronig relations. The temperature coefficient of resonator frequency, τf, is related to three material parameters according to the equation, τf = - (½ τε + ½ τµ + αL), where τε, τµ, and αL are the temperature coefficient of dielectric constant, magnetic permeability, and lattice constant, respectively. Each of these parameters for dielectric materials of interest are measured experimentally. These results, in combination with density functional simulations, developed a much improved understanding of the fundamental mechanisms responsible for τf. The same experimental methods have been used to characterize in-situ the physical nature and concentration of performance-degrading point defects in the dielectrics of superconducting planar microwave resonators. / Dissertation/Thesis / Doctoral Dissertation Materials Science and Engineering 2016

Page generated in 0.0523 seconds