• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Microwave Interferometry Diagnostic Applications for Measurements of Explosives

Kline, Loren A 01 July 2017 (has links) (PDF)
Microwave interferometry (MI) is a Doppler based diagnostic tool used to measure the detonation velocity of explosives, which has applications to explosive safety. The geometry used in existing MI experiments is cylindrical explosives pellets layered in a cylindrical case. It is of interest to Lawrence Livermore National Labs to measure additional geometries that may be overmoded, meaning that the geometries propagate higher-order transverse electromagnetic waves. The goal of my project is to measure and analyze the input reflection from a novel structure and to find a good frequency to use in an experiment using this structure. Two methods of determining a good frequency are applied to the phase of the input reflection. The first method is R2, used to measure the linearity of input reflection phase. The second is a zero-crossing method that measures how periodic the input reflection phase is. Frequencies with R2 values higher than .995 may be usable for an experiment in the novel structure.
2

Several Novel Applications of Microwave Interferometry in the Measurement of Solid Rocket Propellant Regression Rates

Daniel Joseph Klinger (12903566) 26 July 2022 (has links)
<p>When characterizing a new solid propellant, one of the most important steps in determining its usefulness is discovering how the burning rate changes in response to changes in pressure. While there are many dynamic methods for directly measuring the regression rate of a burning propellant sample, few of them are capable of being used in typical harsh motor conditions: high pressures, high temperatures, and in an environment comprised of propellant exhaust products. This paper describes and evaluates the use of two custom-built microwave interferometers, one operating at 35 GHz and the other operating at 94 GHz, in several different configurations for the measurement of propellant regression rates. Four different configurations of interferometer and waveguide are presented and contrasted, with example results of experiments included. A polytetrafluoroethylene (PTFE) waveguide, utilized in previous works for explosives detonation velocity characterization, was used to directly couple interferometer signal with a burning propellant strand. This PTFE coupling is shown to be applicable to pressure vessel studies by simply using a cable feedthrough. In this configuration, signal quality is high but signal amplitude is low, especially when the waveguide is encased by support structures. A novel PTFE truncated cone waveguide expander is presented which performs three tasks: expanding the microwave signal such that an oversized (relative to signal wavelength) strand may be examined via microwave interferometry, functioning as a weak antenna that can observe phenomena through interstitial material without picking up significant amounts of environmental reflection, and acting as a sealing surface for pressure vessel experiments. Additionally, the use of a more-standard hollow-core waveguide and high-gain antenna is displayed, highlighting the increased signal strength but the larger number of spurious reflections in the signal. This study shows, through various experiments using the aforementioned configurations, the capability of microwave interferometry to quickly characterize a full propellant burning rate curve using a single dynamic-pressure test with 40g of propellant in a 2.5cm diameter propellant strand. Several novel combinations of mechanical configuration and propellant composition are shown that may guide future studies into the use microwave interferometry for solid propellant regression rate analysis.</p>
3

Stérilisation de dispositifs médicaux ensachés par plasmas froids basse pression / Low pressure plasma sterilization of packaged medical devices

Maho, Thomas 19 December 2016 (has links)
Dans le domaine médical, l’évolution des techniques et des technologies ainsi que l’apparition de nouveaux matériaux ont favorisé le développement de dispositifs médicaux (DM) toujours plus performants et légers. Certains de ces matériaux sont difficilement stérilisables de par leur fragilité aux agents stérilisants (physiques ou chimiques). De nombreuses études ont montré l’efficacité des plasmas froids sur des souches bactériennes pathogènes mais le maintien à l’état stérile des DM fragiles et sensibles à la température reste un verrou technique à lever. Cette thèse CIFRE s’inscrit dans le cadre du projet ANR PLAS’STER. Il vise à développer un procédé industriel pouvant répondre à une certification comme stérilisateur par plasmas froids basse pression. Le caractère innovant réside en la création et au confinement d’un plasma à l’intérieur d’un sac de stérilisation assurant la préservation de l’état stérile du DM stérilisé. Une première partie a été consacrée à la caractérisation physique des décharges plasmas confinées dans le sac de stérilisation. Cette étude a permis d’identifier les espèces potentiellement bactéricides et de définir des conditions favorables à leur production. Dans un second temps, l’efficacité bactéricide du procédé a été démontrée sur des bactéries à Gram négatif et à Gram positif selon la norme EN556. En parallèle, l’étude paramétrique réalisée sur E. coli a apporté des éléments de réponse sur les mécanismes de stérilisation et a ouvert des pistes sur l’optimisation du procédé. Enfin, l’analyse post-traitement des propriétés de biomatériaux a démontré l’absence de modifications macromoléculaires et a validé la potentialité du procédé PLAS’STER comme alternative aux méthodes usuelles de stérilisation. / Standard sterilization methods such as autoclave, ethylene oxide or irradiation can affect the biocompatibility of medical devices, especially those sensitive to heat or chemicals products. Numerous studies have demonstrated the possibility to use low pressure plasmas as an alternative sterilization process: low process temperature, treatment time competitive to autoclave and without any toxic agent. However, the sterile state preservation is still a problem. In the framework of the ANR PLAS'STER project, this CIFRE thesis focus on a new sterilization process development based on low pressure cold plasmas. The innovation resides in the creation and the confinement of a plasma inside a sterilization bag, thereby ensuring the conservation of the sterile state. The first part was dedicated to the physical characterization of the plasmas discharges confined inside the bag of sterilization. Secondly, the bactericidal efficiency of the process was demonstrated on Gram negative and Gram positive bacteria according to the EN556 standard. Additional tests on E. coli lead to hypothesis on the sterilization mechanisms and opened tracks on the optimization of our process. Finally, the properties analysis of biomaterials demonstrated the absence of macromolecular modifications and validated the potentiality of the process PLAS' STER as the sterilization method alternative.
4

INVESTIGATION OF PLASMAS SUSTAINED BY HIGH REPETITION RATE SHORT PULSES WITH APPLICATIONS TO LOW NOISE PLASMA ANTENNAS

Vladlen Alexandrovich Podolsky (7478276) 17 October 2019 (has links)
<p> In the past two decades, great interest in weakly ionized plasmas sustained by high voltage nanosecond pulsed plasmas at high repetition rates has emerged. For such plasmas, the electron number density does not significantly decay between pulses, unlike the electron temperature. Such conditions are favorable to reconfigurable plasma antennas where the low electron temperature may enable the reduction of the Johnson–Nyquist thermal noise if an antenna is operated in the plasma afterglow. Moreover, it may be possible to sustain such conditions with RF pulses. Doing so could enable a plasma antenna that transmits the driving frequency when the pulse is applied and receives other frequencies with low thermal noise between pulses.</p> <p>To study nanosecond pulsed plasmas, experiments were performed in a parallel-plate electrode configuration in argon and nitrogen gas at a pressure of several Torr and repetition frequencies of 30-75 kHz. To measure the time-resolved electron number density in the afterglow of each pulse, a custom 58.1 GHz homodyne microwave interferometer was constructed. The voltage and current measurements were made using a back current shunt (BCS). Initial analysis of the measured electron density in both plasmas indicated that the electron thermalization was much faster than the electron decay. In the nitrogen plasma, dissociative recombination with cluster ions was the dominant electron loss mechanism. However, the dissociative recombination rates of the electrons in the argon plasma suggested the presence of molecular impurities, such as water vapor. Therefore, to better understand the recombination mechanisms in argon plasma with trace amounts (0.1% or less by volume) of water vapor under the experimental conditions, a 0-D kinetic model was developed and fit to the experimental data. The influence of trace amounts of water on the electron temperature and density decay was studied by solving electron energy and continuity equations. It was found that in pure argon, Ar<sup>+</sup> ions dominate while the electrons are very slow to thermalize and recombine. Including trace amounts of water impurities drastically reduces the time for electrons to thermalize and increases their rate of recombination. </p> <p>In addition to large quasi-steady electron number densities and low electron temperature in the plasma afterglow, plasmas sustained by nanosecond pulses use a lower power budget than those sustained by RF or DC supplies. The efficiency of the power budget can be characterized by measuring the ionization cost per electron, defined as the ratio of the energy deposited in a pulse to the total number of electrons created. This was experimentally determined in air and argon plasmas at 2-10 Torr sustained by 1-7 kV nanosecond pulses at repetition frequencies of 0.1-30 kHz. The number of electrons were determined from the measured electron density through microwave interferometry and assuming a plasma volume equivalent to the volume between electrodes. The energy deposited was calculated from voltage and current measurements using both a BCS as well as high frequency resistive voltage divider and fast current transformer (FCT). It was found that the ionization cost in all conditions was within a factor of three of Stoletov’s point (the theoretical minimum ionization cost) and two orders of magnitude less than RF plasma.</p><p> </p><p>Having shown that it is possible to generate high electron density, low electron temperature plasmas with nanosecond pulses, it was necessary to now create a plasma antenna prototype. Initially, commercial fluorescent light bulbs were used and ignited using surface wave excitation at various RF frequencies and powers. The S<sub>11</sub> of the antenna response was measured by a VNA through a novel coupling circuit, while the deposited power was measured using a bi-directional coupler. Next, a custom plasma antenna was created in which the pressure and gas composition could be varied. In addition to the S<sub>11</sub> and deposited power, the antenna gain, and the electron number density were also measured for a pure argon plasma antenna at pressures of 0.3-1 Torr. Varying the applied power shifts the antenna resonance frequency while increasing the excitation frequency caused an increase in measured electron density for the same deposited power. Initial tests using direct electrode excitation of a twin-tube integrated compact fluorescent light bulb with nanosecond pulses have successfully been achieved. Future efforts include designing the proper circuitry to time-gate out the large pulse voltage to facilitate safe antenna measurements in the plasma afterglow.<br></p>
5

Amorçage en détonation des explosifs hétérogènes de type coulé fondu : Etablissement de corrélations entre microstructure et réactivité / Detonation initiation of heterogeneous melt-cast high explosives : Microstructure and reaction rate correlations

Chuzeville, Vincent Pierre 20 October 2016 (has links)
Ce travail de thèse porte sur les mécanismes d’amorçage en détonation par choc des explosifs solides de type coulé-fondu. Les explosifs solides sont des matériaux hétérogènes constitués de grains de matière énergétique dans un liant pouvant être lui-même énergétique. Si l’existence des points chauds, sites préférentiels d’initiation des réactions chimiques à l’échelle locale, est largement reconnue, la topologie de la croissance des réactions, et l’influence de la microstructure sur cette dernière n’est que peu étudiée dans les explosifs coulés-fondus. Deux familles d’explosifs ont été retenues pour cette étude : les hexolites, mélanges de grains d’hexogène (RDX) et d’un liant trinitrotoluène (TNT) et les ontalites, composées d’oxynitrotriazole (ONTA) et de TNT. Les recherches se sont orientées autour du triptyque : caractérisation – expérimentations – modélisation.Un important travail de compilation et de ré-exploitation de données issues de la littérature, associé à une modélisation des équations d’état des explosifs purs, ont permis de définir des lois permettant de calculer le comportement de ces derniers sous choc. Ces lois ont ensuite été validées par une méthode de mélange sur différentes compositions coulées-fondues et composites. Parallèlement, la microstructure des compositions d’étude a également été caractérisée via des mesures de granulométrie et de microtomographie, inédites sur ce type d’explosif.Des expérimentations d’impact plan soutenu ont été réalisées afin d’établir les diagrammes de marche des ondes de choc réactives, permettant de relier la profondeur de transition à la détonation à la pression de sollicitation. Elles ont permis de mettre en lumière l’influence de la microstructure sur la sensibilité au choc de deux hexolites et d’acquérir des données sur deux ontalites. L’utilisation de deux métrologies innovantes, la radio-interférométrie à 94 GHz et les fibres optiques à réseau de Bragg, a permis de mesurer la transition choc – détonation (TCD) de façon continue avec une résolution inédite. Enfin des essais d’impact plan non soutenu ont été réalisés à des fins de validation.Un modèle de TCD est proposé. Ce dernier, basé sur une approche de germination-croissance des fronts de déflagration à l’échelle locale, permet de prendre en compte la microstructure des explosifs. Ces travaux semblent mettre en évidence l’influence de la fracturation des grains d’explosif sous choc, qu’il conviendra d’étudier dans le futur. Enfin, une étape de terminaison des réactions lors de la TCD, associée à des calculs thermocinétiques détaillés, a été étudiée. / This study deals with the detonation initiation by shock of condensed melt-cast high explosives. Solid explosives are heterogeneous materials, made of energetic material grains in a binder, which can be energetic itself. If the existence of hot-spots, preferred initiation sites for chemical reaction at the local scale, is widely recognized, the reaction growth topology, and the microstructure influence, are poorly known for melt-cast explosives. We study here two melt-cast explosive families: hexolites, a mix of hexogen (RDX) grains and trinitrotoluene (TNT) binder, and ontalites made of nitrotriazolone (NTO) and TNT. This study has been focused on the triptyque: characterization - experimentations - modeling.An important work of compilation and re-exploitation of literature data, combined with pure explosives’ equation of state modeling, allowed us to define laws to calculate the explosives’ comportment under a shock solicitation. These ones have been validated, thanks to a mixing method, on different melt-cast and cast-curd plastic bonded explosives. At the same time, the compositions’ microstructure has been also characterized via granulometry measurements and microtomographies, never published for this type of explosive.Plate impact tests have been performed in order to establish the reactive shock trajectory of these compositions, allowing us to determine the relation between the run-distance of detonation and the input pressure. It brought the microstructure influence on hexolite shock sensitivity to light, and gave us some first results for ontalites. The use of continuous and innovative measurements, as microwave interferometry and chirped fiber Bragg gratings, allowed us to study the shock to detonation transition (SDT) with a resolution never seen before. Finally, non-sustained plate impact test have been performed for a validation purpose.A SDT model is proposed. Based on a germination-growth approach of deflagration fronts at the local scale, it takes into account the explosive’s microstructure. This work seems to show the grain fragmentation under shock influence, point we will have to study in the future. Finally, a completion step of reactions, associated with chemical kinetics calculations, has been studied.
6

<b>Closed Vessel Burning Rate Measurements of Composite Propellants Using Microwave Interferometry</b>

Shane A Oatman (18396357) 17 April 2024 (has links)
<p dir="ltr">Burning rate as a function of pressure is one of the primary evaluation metrics of solid propellants. Most solid propellant burning rate measurements are made at a nearly constant pressure using a variety of measurement approaches. This type of burning rate data is highly discretized and requires many tests to accurately determine the burning rate response to pressure. It would be moreefficient to measure burning rate dynamically as pressures are varied. Techniques used to make transient burning rate measurements are reviewed briefly and initial results using a microwave interferometry (MI) technique are presented. The MI method used in tandem with a closed bomb enables nearly continuous measurement of burning rates for self-pressurizing burns, capturing burning rate data over a wide range of pressures. This approach is especially useful for characterization of propellants with complex burning behaviors (e.g., slope breaks or mesa burning). The burning rates of three research propellants were characterized over a pressure range of 0.101-24.14 MPa (14-3500 psi). One research propellant exhibited a slope break at a pressure of 6.63 MPa (960 psi). Using MI in a closed pressure vessel, 14 propellant strand burns resulted in a nearly continuous burning rate curve over a pressure range of 0.41-24.13MPa (60-3500psi) that reasonably matched conventional burning rate measurements. The development of this technique provides an opportunity to quickly characterize the burning rate curve of solid propellants with greater fidelity and efficiency than traditional quasi-static pressure testing techniques.</p>

Page generated in 0.106 seconds