Spelling suggestions: "subject:"did ocean bridges"" "subject:"dfid ocean bridges""
41 |
Insights into the distribution and mobility of metals in the sheeted dike complex formed at fast-spreading ridges (Pito Deep, EPR)Zoeller, Khalhela 17 April 2014 (has links)
Hydrothermal fluid circulation is an important process in the formation and evolution of ocean crust. A tectonic window located at Pit Deep (NE corner Easter Microplate) provides an ideal location to examine a 3-dimensional view of ocean crust formed at the fast-spreading East Pacific Rise. This study focuses on the base metal (Cu, Ni, Mn, Co, Zn, and Pb) content of the bulk rock and mineral components in the sheeted dike complex. There is no observable trend of metal mobility with depth, geographic location, or dominant alteration phase. Secondary mineral analyses (using LA-ICP-MS) show that metals are redistributed throughout the sheeted dikes, entering into secondary sulphides, chlorite, and amphibole. Temperature and mineral stability is a primary control of metal mobility in these rocks. Due to highly variable metal concentrations and observed temperatures of alterations, the hydrothermal cell is suggested to be a continuously evolving system, and can cause the large variability observed in the metal distribution in the sheeted dikes. / Graduate / 0996 / 0411 / 0372
|
42 |
Boundary layer models of hydrothermal circulation on Earth and MarsCraft, Kathleen L. 25 August 2008 (has links)
Continental and submarine hydrothermal systems are commonly found around the world. Similar systems that sustain water or other fluids are also likely to exist in planetary bodies throughout the solar system. Also, terrestrial submarine systems have been suggested as the locations of the first life on Earth and may, therefore, provide indications of where to find life on other planetary bodies. The study of these systems is vital to the understanding of planetary heat transfer, chemical cycling, and biological processes; hence hydrothermal processes play a fundamental role in planetary evolution.
In this thesis, three particular types of hydrothermal systems are investigated through the development of mathematical models: (1) terrestrial low-temperature diffuse flows at mid-oceanic ridges (MORs), (2) submarine near-axis convection on Earth, and (3) convection driven by magmatic intrusives on Mars. Model set-ups for all systems include a two-dimensional space with a vertical, hot wall, maintained at constant temperature, located adjacent to a water-saturated porous medium at a lower temperature. By assuming that convection occurs vigorously and within a thin layer next to the hot wall, boundary layer theory is applicable.
The models provide steady-state, single-phase estimates of the total heat and mass transfer rates in each scenario over permeability ranges of 10<sup>-14</sup> m<sup>2</sup> to 10<sup>-10</sup> m<sup>2</sup> for the submarine systems and 10<sup>-14</sup> m<sup>2</sup> to 10<sup>-8</sup> m<sup>2</sup> for the Martian systems. Heat output results derived from the boundary layer model suggest that diffuse flow on MORs contributes 50% or less of heat output to the ridge system, which falls at the low end of observations. For the near-axis model, results found that heat transfer in the hydrothermal boundary layer was greater than the input from steady state generation of the oceanic crust by seafloor spreading. This suggests that the size of the mushy zone evolves with time. Heat output and fluid flux calculations for Martian systems show that fluid outflow adjacent to a single intrusion is too small to generate observed Martian surface features in a reasonable length of time.
|
43 |
Geophysical investigations of the Reykjanes Ridge and Kolbeinsey Ridge seafloor spreading centersAppelgate, Bruce January 1995 (has links)
Thesis (Ph. D.)--University of Hawaii at Manoa, 1995. / Includes bibliographical references (leaves 77-86). / Microfiche. / ix, 86 leaves, bound ill. (some col.) 29 cm
|
44 |
Effects of off-axis melt supply at fast-spreading mid-ocean ridges: A study of the 9-10n region of the East Pacific RiseDurant, Douglas Troy, 1965- 06 1900 (has links)
xiv, 103 p. : ill. (some col.) / Results from a recent mid-ocean ridge tomography study along the fast-spreading, northern East Pacific Rise (EPR) reveal that the axis of mantle upwelling beneath the ridge is skewed with respect to the spreading axis, giving rise to regions of both rise-centered and off-axis mantle melt accumulation. Here, we investigate the effects of off-axis melt accumulation on the architecture of overlying crust as well as off-axis melt delivery on crustal construction along the ridge axis. We first present evidence for off-axis magmatism 20 km from the spreading center in 300-ka-old crust overlying a region of off-axis melt supply. Seismic data reveal an intrusive complex ∼2 km beneath the seafloor that is limited in lateral extent (<5 km) and comprises a melt lens underlain by low-velocity, high-attenuation crust, which provides the necessary conditions to drive off-axis volcanic and hydrothermal activity. We next present results from thermodynamic modeling that show systematic, along-axis variations in the depth of crystallization and degree of differentiation of magma produce crustal density variations of ∼0.1 g/cm 3 . These density anomalies are on the order inferred from a recent study that shows increasing axial depth along the northern EPR correlates with an increase in crustal density and offset of mantle upwelling with respect to the ridge axis. Our results, along with geophysical and geochemical data from the 9°-10°N region of the EPR, suggest that along-axis deeps correspond with magmatic systems that have significant near-Moho (i.e., crust-mantle transition) crystallization, which we attribute to off-axis delivery of mantle melt. As this investigation is motivated by the EPR tomography results, we conclude with a numerical study that examines the travel time sensitivity of Pn , a sub-crustal head wave commonly used in local travel time tomography, to crustal and mantle heterogeneity. Our results indicate that Pn travel times and Fresnel zones are insensitive to normal sub-axial crustal thickness anomalies, mantle velocity gradients and crust-mantle velocity contrast variations and that mantle low-velocity zones must be at least 3 km thick to produce significant, near-constant Pn delay times. Our data support the validity and interpretation of the EPR tomography results.
This dissertation includes both previously published and unpublished co-authored material. / Committee in charge: Dr. Douglas R. Toomey, Chairperson;
Dr. Paul J. Wallace, Member;
Dr. Eugene Humphreys, Member;
Dr. James Isenberg, Outside Member
|
45 |
Syn-eruptive degassing of a single submarine lava flow : constraints on MORB CO₂ variability, vesiculation, and eruption dynamics / Constraints on Mid-ocean ridge basalts carbon dioxide variability, vesiculation, and eruption dynamicsNakata, Dorene Samantha January 2010 (has links)
Thesis (S.M.)--Joint Program in Marine Geology and Geophysics (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2010. / Cataloged from PDF version of thesis. / Includes bibliographical references (p. 33-37). / Mid-ocean ridge basalts (MORBs) exhibit a wide range of CO2 concentrations, reflecting saturation to supersaturation (and rarely undersaturation) relative to their emplacement depths. In this study, we explore the mechanisms of CO2 degassing and the implications this has for estimating the advance rates and durations of seafloor eruptions. We present dissolved volatile concentrations (mainly of CO 2 and H20) and vesicle size distributions (VSDs) for a unique suite of MORB glasses collected at the East Pacific Rise, ~9° 50' N. These MORB glasses were collected at -200 m intervals along an across-axis track over a single flow pathway within the recently emplaced 2005-06 eruption boundaries; systematic sample collection provides one of the first opportunities to characterize intra-flow geochemical and physical evolution during a single eruption at a fast-spreading ridge. Compared to measurements of MORB volatiles globally, dissolved H20 concentrations are relatively uniform (0.10 - 0.16 weight percent), whereas dissolved CO2 contents exhibit a range of concentrations (154 - 278 ppm) and decrease with distance from the EPR axis (i.e., eruptive vent). Ion microprobe analysis of dissolved volatiles within the MORB glasses suggest that the magma erupted supersaturated (pressure equilibrium with 920 - 1224 mbsf) and in near-equilibrium with the melt lens of the axial magma chamber (~1250 - 1500 mbsf), and degassed to near equilibrium (299 - 447 mbsf) with seafloor depths over the length of the flow. The decrease in CO 2 concentrations spans nearly the full range of dissolved CO2 contents observed at the EPR and shows that the varying degrees of volatile saturation that have been observed in other MORB sample suites may be explained by degassing during emplacement. Vesicularity (0.1 - 1.2%) increases with decreasing dissolved CO2 concentrations. We use vesicle size distributions (VSDs)-vesicle sizes and number densities-to quantify the physical evolution of the CO2 degassing process. VSDs suggest that diffusion of CO2 into preexisting vesicles, and not nucleation of new vesicles, is the dominant mechanism of increasing CO2 in the vapor phase. We also use VSDs, along with estimates of vesicle growth rates, to constrain emplacement time of the 2005-06 eruption to <~24 hours and to resolve variations in advance rate with down flow distance. / by Dorene Samantha Nakata. / S.M.
|
46 |
Hydrothermal Transport in the Panama Basin and in Brothers Volcano using Heat Flow, Scientific Deep Sea Drilling and Mathematical ModelsKolandaivelu, Kannikha Parameswari 15 February 2019 (has links)
Two-thirds of submarine volcanism in the Earth's ocean basins is manifested along mid-ocean ridges and the remaining one-third is revealed along intraoceanic arcs and seamounts. Hydrothermal systems and the circulation patterns associated with these volcanic settings remove heat from the solid Earth into the deep ocean. Hydrothermal circulation continues to remove and redistribute heat in the crust as it ages. The heat and mass fluxes added to the deep ocean influence mixing in the abyssal ocean thereby affecting global thermohaline circulation. In addition to removing heat, hydrothermal processes extract chemical components from the oceanic and carry it to the surface of the ocean floor, while also removing certain elements from seawater. The resulting geochemical cycling has ramifications on the localized mineral deposits and also the biota that utilize these chemical fluxes as nutrients. In this dissertation, I analyze observed conductive heat flow measurements in the Panama Basin and borehole thermal measurements in Brothers Volcano and use mathematical models to estimate advective heat and mass fluxes, and crustal permeability. In the first manuscript, I use a well-mixed aquifer model to explain the heat transport in a sediment pond in the inactive part of the Ecuador Fracture Zone. This model yields mass fluxes and permeabilities similar to estimates at young upper oceanic crust suggesting vigorous convection beneath the sediment layer. In the second manuscript, I analyze the conductive heat flow measurements made in oceanic between 1.5 and 5.7 Ma on the southern flank of the Costa Rica Rift. These data show a mean conductive heat deficit of 70%, and this deficit is explained by various hydrothermal advective transport mechanisms, including outcrop to outcrop circulation, transport through faults, and redistribution of heat by flow of hydrothermal fluids in the basement. In the third manuscript, I analyze the borehole temperature logs for two sites representative of recharge and discharge areas of hydrothermal systems in the Brothers Volcano. I develop upflow and downflow models for fluids in the borehole and formation resulting in estimated of flow rates and permeabilities. All three independent research works are connected by the common thread of utilizing relatively simple mathematical concepts to get new insights into hydrothermal processes in oceanic crust. / PHD / Two-thirds of underwater volcanic activity in the Earth’s ocean basins is exhibited in areas where new material for Earth’s outer shell is created and the remaining one-third is displayed along areas where the outer shell is destroyed. In these areas, hot springs that are under water and their water movement patterns remove heat from the solid outer shell and puts it into the deepest parts of the ocean. Hot water circulation continues to remove and redistribute heat and various chemical elements in the shell as it grows old. This heat and chemical elements, which get added to the deep ocean water, influences the way water mixes and forms layers in the world oceans. This also affects the movement of ocean currents. The chemical elements removed from the shell by hot water gets deposited as minerals on the ocean floor in places where hot springs arise. This variety of minerals provides nutrients for different marine organisms. In this work done during my PhD studies, I examine the heat and temperature that was measured in the Panama Basin and Brothers Volcano. I utilize these examinations to build simple math models to find out how much heat and chemical components are being added to the deep ocean water. I also find out the methods in which the hot water springs appear on the ocean floor and the patterns in which the hot water circulates in the Earth’s outer shell. All of these estimates will help the scientists who are studying the patterns and changes in ocean currents by giving them a number on how much heat is released from the inside of the Earth.
|
47 |
Lower Ocean Crust beneath Slow-Spreading Ridges: a Combined Oxygen Isotopic and Elemental in-situ Study on Hole 735B Gabbros / Lower Ocean Crust beneath Slow-Spreading Ridges: a Combined Oxygen Isotopic and Elemental in-situ Study on Hole 735B GabbrosGao, Yongjun 28 June 2004 (has links)
No description available.
|
Page generated in 0.0611 seconds