• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude et analyse anthropologique de la politique environnementale au Gabon : le cas du parc national des Monts De Cristal / Study and anthropological analysis of the environmental policy of the Gabon : those of the national park of crystal mounts

Mekemeza Engo, Aimée Prisca 14 November 2014 (has links)
Ce travail est une réflexion sur les politiques de gestion des Parc Nationaux au Gabon, et particulièrement celles des Monts de Cristal. Il cherche à comprendre, dans une perspective anthropologique, les processus de mise à l'écart des populations autochtones du milieu naturel dans lequel ils s'approvisionnent en ressources naturelles. Un concept clé guide les analyses de cette thèse : celle de « gestion féodale ». Les politiques environnementales, dont l'objectif est la conservation durable des écosystèmes gabonais, s'avèrent « marginalisantes » et produisent des effets « pervers ». Parmi ceux-ci, la mutation des statuts sociaux des personnes vivant à la périphérie du parc des Monts de Cristal, passant du statut d'autochtone à celui de« braconnier ». La législation en vigueur relative à la protection environnementale bouleverse et transforme le mode de vie des populations autochtones. En réaction à ces politiques et en l'absence de mesures sociales compensatoires, ces populations s'inscrivent dans des processus de résistance, redoublant toujours d'ingéniosité à côté des « populations migrantes » pour prélever les ressources du parc et préserver leur mode vie. C'est donc dans des modalités de conflits permanents que s'organisent les rapports entre l'acteur institutionnel, les populations autochtones et les populations migrantes. / This work focuses on the management policies of the Park National in Gabon, and particularly those of the Cristal Mounts. It tries to understand, from an anthropological point of view, the processes of sidelining of the autochtonous populations of the natural environment in which they stock up with natural resources. The main concept which guides this thesis is the one of the "feudal management". Environmental policies, the objective of which is the long-lasting preservation of the Gabonese ecosystems turn into "marginalizing" and produce "perverse effects". Among these, the change of the social status of people living in the periphery of the park of Cristal Mounts, passing from "native" to "poacher". The legislation in force relative to the environmental protection upsets and transforms the lifestyle of the autochtonous populations. In reaction to these politics and in the absence of compensatory social measures, these populations join processes of resistance, always doubling ingenuity, next to the "migrant populations ", to take the resources of the park and protect their mode life. It is thus in modalities of permanent conflicts that get organized reports between the institutional actor, the autochtonous populations and the migrant populations.
2

Mathematical modeling of an epidemic under vaccination in two interacting populations

Ahmed, Ibrahim H.I. January 2011 (has links)
<p><b>In this dissertation we present the quantitative response of an epidemic of the so-called SIR-type, in a population consisting of a local component and a migrant component. Each component can be divided into three classes, the susceptible individuals, usually denoted by S, who are uninfected but may contract the disease, infected individuals (I) who are infected and can spread the disease to the susceptible individuals and the class (R) of recovered individuals. If a susceptible individual becomes infected, it moves into the infected class. An infected individual, at recovery, moves to the class R. Firstly we develop a model describing two interacting populations with vaccination. Assuming the vaccination rate in both groups or components are constant, we calculate a threshold parameter and we call it a vaccination reproductive number. This invariant determines whether the disease will die out or becomes endemic on the (in particular, local) population. Then we present the stability analysis of equilibrium points and the effect of vaccination. Our primary finding is that the behaviour of the disease free equilibrium depend on the vaccination rates of the combined population. We show that the disease free equilibrium is locally asymptotically stable if the vaccination reproductive number is less than one. Also our stability analysis show that the global stability of the disease free equilibrium depends on the basic reproduction number, not the vaccination reproductive number. If the vaccination reproductive number is greater than one, then the disease free equilibrium is unstable and there exists three endemic equilibrium points in our model. Two of these three endemic equilibria are so-called boundary equilibrium points, which means that the infection is only in one group of the population. The third one which we focus on is the general endemic point for the whole system. We derive a threshold condition that determines whether the endemic equilibria is locally asymptotically stable or not. Secondly, by assuming that the rate of vaccination in the migrant population is constant, we apply optimal control theory to find an optimal vaccination strategy in the local population. Our numerical simulation shows the effectiveness of the control strategy. This model is suitable for modeling the real life situation to control many communicable diseases. Models similar to the model used in the main contribution of our dissertation do exist in the literature. In fact, our model can be regarded as being in-between those of [Jia et al., Theoretical Population Biology 73 (2008) 437-448] and [Piccolo and Billings, Mathematical and Computer Modeling 42 (2005) 291-299]. Nevertheless our stability analysis is original, and furthermore we perform an optimal control study whereas the two cited papers do not. The essence of chapter 5 and 6 of this dissertation is being prepared for publication.</b></p>
3

Mathematical modeling of an epidemic under vaccination in two interacting populations

Ahmed, Ibrahim H.I. January 2011 (has links)
<p><b>In this dissertation we present the quantitative response of an epidemic of the so-called SIR-type, in a population consisting of a local component and a migrant component. Each component can be divided into three classes, the susceptible individuals, usually denoted by S, who are uninfected but may contract the disease, infected individuals (I) who are infected and can spread the disease to the susceptible individuals and the class (R) of recovered individuals. If a susceptible individual becomes infected, it moves into the infected class. An infected individual, at recovery, moves to the class R. Firstly we develop a model describing two interacting populations with vaccination. Assuming the vaccination rate in both groups or components are constant, we calculate a threshold parameter and we call it a vaccination reproductive number. This invariant determines whether the disease will die out or becomes endemic on the (in particular, local) population. Then we present the stability analysis of equilibrium points and the effect of vaccination. Our primary finding is that the behaviour of the disease free equilibrium depend on the vaccination rates of the combined population. We show that the disease free equilibrium is locally asymptotically stable if the vaccination reproductive number is less than one. Also our stability analysis show that the global stability of the disease free equilibrium depends on the basic reproduction number, not the vaccination reproductive number. If the vaccination reproductive number is greater than one, then the disease free equilibrium is unstable and there exists three endemic equilibrium points in our model. Two of these three endemic equilibria are so-called boundary equilibrium points, which means that the infection is only in one group of the population. The third one which we focus on is the general endemic point for the whole system. We derive a threshold condition that determines whether the endemic equilibria is locally asymptotically stable or not. Secondly, by assuming that the rate of vaccination in the migrant population is constant, we apply optimal control theory to find an optimal vaccination strategy in the local population. Our numerical simulation shows the effectiveness of the control strategy. This model is suitable for modeling the real life situation to control many communicable diseases. Models similar to the model used in the main contribution of our dissertation do exist in the literature. In fact, our model can be regarded as being in-between those of [Jia et al., Theoretical Population Biology 73 (2008) 437-448] and [Piccolo and Billings, Mathematical and Computer Modeling 42 (2005) 291-299]. Nevertheless our stability analysis is original, and furthermore we perform an optimal control study whereas the two cited papers do not. The essence of chapter 5 and 6 of this dissertation is being prepared for publication.</b></p>
4

Mathematical modeling of an epidemic under vaccination in two interacting populations

Ahmed, Ibrahim H.I. January 2011 (has links)
>Magister Scientiae - MSc / In this dissertation we present the quantitative response of an epidemic of the so-called SIR-type, in a population consisting of a local component and a migrant component. Each component can be divided into three classes, the susceptible individuals, usually denoted by S, who are uninfected but may contract the disease, infected individuals (I) who are infected and can spread the disease to the susceptible individuals and the class (R) of recovered individuals. If a susceptible individual becomes infected, it moves into the infected class. An infected individual, at recovery, moves to the class R. Firstly we develop a model describing two interacting populations with vaccination. Assuming the vaccination rate in both groups or components are constant, we calculate a threshold parameter and we call it a vaccination reproductive number. This invariant determines whether the disease will die out or becomes endemic on the (in particular, local) population. Then we present the stability analysis of equilibrium points and the effect of vaccination. Our primary finding is that the behaviour of the disease free equilibrium depend on the vaccination rates of the combined population. We show that the disease free equilibrium is locally asymptotically stable if the vaccination reproductive number is less than one. Also our stability analysis show that the global stability of the disease free equilibrium depends on the basic reproduction number, not the vaccination reproductive number. If the vaccination reproductive number is greater than one, then the disease free equilibrium is unstable and there exists three endemic equilibrium points in our model. Two of these three endemic equilibria are so-called boundary equilibrium points, which means that the infection is only in one group of the population. The third one which we focus on is the general endemic point for the whole system. We derive a threshold condition that determines whether the endemic equilibria is locally asymptotically stable or not. Secondly, by assuming that the rate of vaccination in the migrant population is constant, we apply optimal control theory to find an optimal vaccination strategy in the local population. Our numerical simulation shows the effectiveness of the control strategy. This model is suitable for modeling the real life situation to control many communicable diseases. Models similar to the model used in the main contribution of our dissertation do exist in the literature. In fact, our model can be regarded as being in-between those of [Jia et al., Theoretical Population Biology 73 (2008) 437-448] and [Piccolo and Billings, Mathematical and Computer Modeling 42 (2005) 291-299]. Nevertheless our stability analysis is original, and furthermore we perform an optimal control study whereas the two cited papers do not. The essence of chapter 5 and 6 of this dissertation is being prepared for publication. / South Africa

Page generated in 0.135 seconds