Spelling suggestions: "subject:"mikrokolonien"" "subject:"makrokolonien""
1 |
Dynamics of bacterial aggregatesPönisch, Wolfram 23 April 2018 (has links) (PDF)
The majority of bacteria are organized in surface-associated communities, the so called biofilms. Crucial processes that drive the formation of such biofilms are the motility of bacteria on a substrate, enabling cells to reach each others vicinity, and attractive cell-cell-interactions, driving the formation of microcolonies. These colonies, aggregates consisting of thousands of cells, are the precursors of biofilms. In this thesis we investigate the role of cell appendages, called type IV pili, in the substrate motion of bacteria and the formation of bacterial microcolonies. Therefore, we study the bacterial dynamics with the help of experiments and theoretical models. We introduce a novel simulation tool in the tradition of Brownian dynamics simulations. In this computational model, that was developed alongside experimental observations, we study how explicit pili dynamics, pili-substrate and pili–pili interactions drive the cell dynamics. First, we apply our model to investigate how individual cells move on a substrate due to cycles of protrusion and retraction of type IV pili. We show that the characteristic features, in particular persistent motion, can solely originate from collective interactions of pili. Next, we perform experiments to study the coalescence of bacterial microcolonies. With the help of experiments and our computational model, we identify a spatially-dependent gradient of motility of cells within the colony as the origin of a separation of time scale, a feature which is in disagreement with the coalescence dynamics of fluid droplets. Additionally, we show that altering the force generation of pili can cause demixing of cells within bacterial aggregates. Finally, we combine our knowledge of the substrate motion of cells and of the pili-mediated interactions of colonies to identify the main processes (aggregation, fragmentation and cell divisions) that drive assembly of colonies. Starting from experiments, we develop a mathematical model and observe excellent qualitative and quantitative agreement to experimental data of the density of colonies of different sizes. In summary, hand in hand with experiments, we develop theoretical frameworks to unravel the role of type IV pili in bacterial surface motility, microcolony dynamics and colony formation.
|
2 |
Piliated Neisseria gonorrhoeae induce host cell signaling to stabilize extracellular colonization and microcolony formationBöttcher, Jan Peter 30 March 2012 (has links)
Neisseria gonorrhoeae verursacht die sexuell übertragbare Krankheit Gonorrhoe und ist ein Typ-IV-Pili (Tfp) exprimierendes Bakterium, das den Urogenitaltrakt besiedelt. Frühe Infektionsstadien piliierter N. gonorrhoeae (P+GC) sind durch die Tfp-vermittelte Adhärenz an Wirtszellen gekennzeichnet, dann erfolgt die Bildung von Mikrokolonien auf Wirtszellepithelien. Hier wird gezeigt, dass die Wirtszellen an der effizienten Bildung der extrazellulären Mikrokolonien beteiligt sind. P+GC die fixierte Wirtszellen infizieren weisen eine verzögerte Mikrokoloniebildung gegenüber einer Infektion lebender Wirtszellen auf. Kortikales Aktin wird zusammen mit Signalproteinen innerhalb der Wirtszellen zu den adhärierten Bakterien rekrutiert, darunter das Hauptstrukturprotein von Caveolae-Membrandomänen, Caveolin-1 (Cav1). Eine Reduzierung der Expression von Cav1 führt zu einer verstärkten Aufnahme von P+GC in die Wirtszellen, wohingegen die Expression von Cav1 in Cav1-negativen Zellen eine Internalisierung verhindert. Internalisierte Bakterien weisen dabei geringere Überlebensraten auf je länger sie in den Wirtszellen verbleiben. Die Rekrutierung von Cav1 ist eine unmittelbare und kontinuierliche zelluläre Antwort auf eine Infektion mit P+GC, welche die Phosphorylierung von Cav1 an Tyrosin 14 bedingt. Zusätzlich erforderte die Cav1-vermittelte Blockierung der Internalisierung der Bakterien und die Verankerung von Cav1 mit dem Zytoskelett eine Tyrosinphosphorylierung von Cav1. Eine Analyse möglicher Interaktionspartner von phosphoryliertem Cav1 zeigte eine direkte Interaktion mit Vav2. Sowohl Vav2 als auch sein Substrat, die kleine GTPase RhoA, blockieren die Aufnahme von Bakterien in die in Wirtszellen. Die Aktivierung von RhoA nach P+GC Infektion erfordert die Expression von Cav1, was auf einen Cav1-Vav2-RhoA Signalweg hindeutet. Darüber hinaus wurden in dieser Arbeit sechs neue, eine SH2-Domäne-beinhaltende Interaktionspartner von phosphoryliertem Cav1 identifiziert. / Neisseria gonorrhoeae causes the sexually transmitted disease gonorrhea and colonizes mucosal epithelia of the human urogenital tract. The early stages of infection with piliated N. gonorrhoeae (P+GC) are characterized by Tfp-mediated adherence to host cells, followed by formation of bacterial microcolonies on the surface of host cells. This study provides evidence that host cell participation is required for the efficient formation of extracellular microcolonies during Neisseria infection. P+GC infecting fixed host cells demonstrate altered motility and delayed microcolony formation compared to infecting living host cells. Cortical actin and various signal transducing proteins are recruited to the site of bacterial attachment within host cells, one of them being the major structural protein of plasma membrane caveolae, Caveolin-1 (Cav1). Down-regulation of Cav1 results in increased uptake of P+GC into host cells whereas expression of the protein in Cav1-negative cells blocks bacterial internalization. Host cell entry results in decreased viability of internalized bacteria over time. Cav1 recruitment is demonstrated to be an immediate and continuous cellular response to P+GC infection that involves Cav1 phosphorylation on its tyrosine 14 residue. Prevention of bacterial uptake mediated by Cav1 as well as tight association of Cav1 with the cytoskeleton also requires tyrosine phosphorylation. A broad analysis of interaction partners of phosphorylated Cav1 revealed a direct interaction with the Rho-family guanine nucleotide exchange factor Vav2. Both Vav2 and its substrate, the small GTPase RhoA, are involved in preventing bacterial uptake and RhoA activation after P+GC infection requires Cav1 expression, thus providing evidence for a Cav1-Vav2-RhoA signaling cascade. Moreover, six novel SH2-domain containing interaction partners of tyrosine phosphorylated Cav1 have been identified, all of which have been implicated in modulating the cytoskeleton.
|
3 |
Dynamics of bacterial aggregates: Theory guided by experimentsPönisch, Wolfram 18 April 2018 (has links)
The majority of bacteria are organized in surface-associated communities, the so called biofilms. Crucial processes that drive the formation of such biofilms are the motility of bacteria on a substrate, enabling cells to reach each others vicinity, and attractive cell-cell-interactions, driving the formation of microcolonies. These colonies, aggregates consisting of thousands of cells, are the precursors of biofilms. In this thesis we investigate the role of cell appendages, called type IV pili, in the substrate motion of bacteria and the formation of bacterial microcolonies. Therefore, we study the bacterial dynamics with the help of experiments and theoretical models. We introduce a novel simulation tool in the tradition of Brownian dynamics simulations. In this computational model, that was developed alongside experimental observations, we study how explicit pili dynamics, pili-substrate and pili–pili interactions drive the cell dynamics. First, we apply our model to investigate how individual cells move on a substrate due to cycles of protrusion and retraction of type IV pili. We show that the characteristic features, in particular persistent motion, can solely originate from collective interactions of pili. Next, we perform experiments to study the coalescence of bacterial microcolonies. With the help of experiments and our computational model, we identify a spatially-dependent gradient of motility of cells within the colony as the origin of a separation of time scale, a feature which is in disagreement with the coalescence dynamics of fluid droplets. Additionally, we show that altering the force generation of pili can cause demixing of cells within bacterial aggregates. Finally, we combine our knowledge of the substrate motion of cells and of the pili-mediated interactions of colonies to identify the main processes (aggregation, fragmentation and cell divisions) that drive assembly of colonies. Starting from experiments, we develop a mathematical model and observe excellent qualitative and quantitative agreement to experimental data of the density of colonies of different sizes. In summary, hand in hand with experiments, we develop theoretical frameworks to unravel the role of type IV pili in bacterial surface motility, microcolony dynamics and colony formation.:1. Introduction
2. Computational model of bacterial motility and mechanics
3. Motility of single bacteria on a substrate
4. Coalescence and internal dynamics of bacterial microcolonies
5. Demixing of bacterial microcolonies
6. Self-assembly of microcolonies
7. Summary and Outlook
A. Details of the Simulation model
B. Experimental protocols
C. Geometric estimation of the parameters of the stochastic model
D. Solutions for simplified models of pili-mediated cell motion
E. Image analysis of experimental data
F. Simulations and data analysis
G. The mean squared relative distance (MSRD)
|
Page generated in 0.0469 seconds