• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantum billiards in reduced phase space

Fürstberger, Silke. January 2003 (has links)
Ulm, Univ., Diss., 2003.
2

Semiclassical localization in phase space

Schubert, Roman. January 2001 (has links)
Ulm, Univ., Diss., 2001.
3

Microlocal analyticity of Feynman integrals

Schultka, Konrad 18 September 2019 (has links)
Wir geben eine rigorose Konstruktion von analytisch-regularisierten Feynman-Integralen im D-dimensionalen Minkowski-Raum als meromorphe Distributionen in den externen Impulsen, sowohl in der Impuls- als auch in der parametrischen Darstellung. Wir zeigen, dass ihre Pole durch die üblichen Power-counting Formeln gegeben sind, und dass ihr singulärer Träger in mikrolokalen Verallgemeinerungen der (+alpha)-Landauflächen enthalten ist. Als weitere Anwendungen geben wir eine Konstruktion von dimensional regularisierten Integralen im Minkowski-Raum und beweisen Diskontinuitätsformeln für parametrische Amplituden. / We give a rigorous construction of analytically regularized Feynman integrals in D-dimensional Minkowski space as meromorphic distributions in the external momenta, both in the momentum and parametric representation. We show that their pole structure is given by the usual power-counting formula and that their singular support is contained in a microlocal generalization of the alpha-Landau surfaces. As further applications, we give a construction of dimensionally regularized integrals in Minkowski space and prove discontinuity formula for parametric amplitudes.

Page generated in 0.0319 seconds