• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mikrometeorologische Prozesse bei der Ablation eines Alpengletschers /

Weber, Markus. January 2008 (has links)
Zugl.: Diss. Univ. Innsbruck, 2004. / Vorgelegt von Michael Kuhn in der Sitzung vom 10. November 2006. Literatur: S. 227-239.
2

Energiebilanzmodellierung zur Ableitung der Evapotranspiration – Beispielregion Khorezm / Optimization of energy balance modelling in order to determine evapotranspiration by developing a physical based soil heat flux approach on the example of Khorezm region in Uzbekistan

Knöfel, Patrick January 2018 (has links) (PDF)
Zum Verständnis der komplexen Wechselwirkungen innerhalb des Klimasystems der Erde sind Kenntnisse über den hydrologischen Zyklus und den Energiekreislauf essentiell. Eine besondere Rolle obliegt hierbei der Evapotranspiration (ET), da sie eine wesentliche Teilkomponente beider oben erwähnter Kreisläufe ist. Die exakte Quantifizierung der regionalen, tatsächlichen Evapotranspiration innerhalb der Wasser- und Energiekreisläufe der Erdoberfläche auf unterschiedlichen zeitlichen und räumlichen Skalen ist für hydrologische, klimatologische und agronomische Fragestellungen von großer Bedeutung. Dabei ist eine realistische Abschätzung der regionalen tatsächlichen Evapotranspiration die wichtigste Herausforderung der hydrologischen Modellierung. Besonders die unterschiedlichen räumlichen und zeitlichen Auflösungen von Satelliteninformationen machen die Fernerkundung sowohl für globale als auch regionale hydrologischen Fragestellungen interessant. Zusätzlich zur Notwendigkeit des Prozessverständnisses des Wasserkreislaufs auf globaler Ebene kommt dessen regionale Bedeutung für die Landwirtschaft, insbesondere in Bewässerungssystemen arider Regionen. In ariden Klimazonen übersteigt die Menge der Verdunstung oft bei weitem die Niederschlagsmengen. Aufgrund der geringen Niederschlagsmenge muss in ariden agrarischen Regionen das zum Pflanzenwachstum benötigte Wasser mit Hilfe künstlicher Bewässerung aufgebracht werden. Der jeweilige lokale Bewässerungsbedarf hängt von der Feldfrucht und deren Wachstumsphase, den Klimabedingungen, den Bodeneigenschaften und der Ausdehnung der Wurzelzone ab. Die Evapotranspiration ist als Komponente der regionalen Wasserbilanz eine wichtige Steuerungsgröße und Effizienzindikator für das lokale Bewässerungsmanagement. Die Bewässe-rungslandwirtschaft verbraucht weltweit etwa 70 % der verfügbaren Süßwasservorkom-men. Dies wird als einer der Hauptgründe für die weltweit steigende Wasserknappheit identifiziert. Dabei liegt die Wasserentnahme des landwirtschaftlichen Sektors in den OECD Staaten im Mittel bei etwa 44 %, in den Staaten Mittelasiens bei über 90 %. Bei der Erstellung der vorliegenden Arbeit kam die Methode der residualen Bestimmung der Energiebilanz zum Einsatz. Eines der weltweit am häufigsten eingesetzten und vali-dierten fernerkundlichen Residualmodelle zur ET Ableitung ist das SEBAL-Modell (Surface Energy Balance Algorithm for Land, mit über 40 veröffentlichten Studien. SEBAL eignet sich zur Quantifizierung der Verdunstung großflächiger Gebiete und wurde bisher über-wiegend in der Bewässerungslandwirtschaft eingesetzt. Aus diesen Gründen wurde es für die Bearbeitung der Fragestellungen in dieser Arbeit ausgewählt. SEBAL verwendet physikalische und empirische Beziehungen zur Berechnung der Energiebilanzkomponenten basierend auf Fernerkundungsdaten, bei gleichzeitig minimalem Einsatz bodengestützter Daten. Als Eingangsdaten werden u.a. Informationen über Strahlung, Bodenoberflächentemperatur, NDVI, LAI und Albedo verwendet. Zusätzlich zu SEBAL wurden einige Komponenten der SEBAL Weiterentwicklung METRIC (Mapping Evapotranspiration with Internalized Calibration) verwendet, um die Modellierung der ET vorzunehmen. METRIC überwindet einige Limitierungen des SEBAL Verfahrens und kann beispielsweise auch in stärker reliefierten Regionen angewendet werden. Außerdem ermöglicht die Integration einer gebietsspezifischen Referenz-ET sowie einer Landnutzungsklassifikation eine bessere regionale Anpassung des Residualverfahrens. Unter der Annahme der Bedingungen zum Zeitpunkt der Fernerkundungsaufnahme ergibt sich die Energiebilanz an der Erdoberfläche RN = LvE + H + G. Demnach teilt sich die verfügbare Strahlungsenergie RN in die Komponenten latenter Wärme (LVE), fühlbarer Wärme (H) und Bodenwärme (G) auf. Durch Umstellen der Gleichung kann auf die latente Wärme geschlossen werden. Das wesentliche Ziel der vorliegenden Arbeit ist die Optimierung, Erweiterung und Validierung des ausgewählten SEBAL Verfahrens zur regionalen Modellierung der Energiebilanzkomponenten und der daraus abgeleiteten tatsächlichen Evapotranspiration. Die validierten Modellergebnisse der Gebietsverdunstung der Jahre 2009-2011 sollen anschließend als Grundlage dienen, das Gesamtverständnis der regionalen Prozesse des Wasserkreislaufs zu verbessern. Die Arbeit basiert auf der Datengrundlage von MODIS Daten mit 1 km räumlicher Auflösung. Während die Komponenten verfügbare Strahlungsenergie und fühlbarer Wärmestrom physikalisch basiert ermittelt werden, beruht die Berechnung des Bodenwärmestroms ausschließlich auf empirischen Abschätzungen. Ein großer Nachteil des empirischen Ansatzes ist die Vernachlässigung des zeitlichen Versatzes zwischen Strahlungsbilanz und Bodenwärmestrom in Abhängigkeit der aktuellen Bodenfeuchtesituation. Ein besonderer Schwerpunkt der vorliegenden Arbeit liegt auf der Bewertung und Verbesserung der Modellgüte des Bodenwärmestroms durch Verwendung eines neuen Ansatzes zur Integration von Bodenfeuchteinformationen. Daher wird in der Arbeit ein physikalischer Ansatz entwickelt der auf dem Ansatz der periodischen Temperaturveränderung basiert. Hierbei wurde neben dem ENVISAT ASAR SSM Produkt der TU Wien das operationelle Oberflächenbodenfeuchteprodukt ASCAT SSM als Fernerkundungseingangsdaten ausgewählt. Die mit SEBAL modellierten Energiebilanzkomponenten werden durch eine intensive Validierung mit bodengestützten Messungen bewertet, die Messungen stammen von Bodensensoren und Daten einer Eddy-Kovarianz-Station aus den Jahren 2009 bis 2011. Die Region Khorezm gilt als charakteristisch für die wasserbezogene Problematik der Bewässerungslandwirtschaft Mittelasiens und wurde als Untersuchungsgebiet für diese Arbeit ausgewählt. Die wesentlichen Probleme dieser Region entstehen durch die nach wie vor nicht nachhaltige Land- und Wassernutzung, das marode Bewässerungsnetz mit einer Verlustrate von bis zu 40 % und der Bodenversalzung aufgrund hoher Grundwasserspiegel. Im Untersuchungsgebiet wurden in den Jahren 2010 und 2011 umfangreiche Feldarbeiten zur Erhebung lokaler bodengestützter Informationen durchgeführt. Bei der Evaluierung der modellierten Einzelkomponenten ergab sich für die Strahlungsbi-lanz eine hohe Modellgüte (R² > 0,9; rRMSE < 0,2 und NSE > 0,5). Diese Komponente bildet die Grundlage bei der Bezifferung der für die Prozesse an der Erdoberfläche zur Verfügung stehenden Energie. Für die fühlbaren Wärmeströme wurden ebenfalls gute Ergebnisse erzielt, mit NSE von 0,31 und rRMSE von ca. 0,21. Für die residual bestimmte Größe der latenten Wärmeströmung konnte eine insgesamt gute Modellgüte festgestellt werden (R² > 0,6; rRMSE < 0,2 und NSE > 0,5). Dementsprechend gut wurde die tägliche Evapotranspiration modelliert. Hier ergab sich, nach der Interpolation täglicher Werte, eine insgesamt ausreichend gute Modellgüte (R² > 0,5; rRMSE < 0,2 und NSE > 0,4). Dies bestätigt die Ergebnisse vieler Energiebilanzstudien, die lediglich den für die Ableitung der Evapotranspiration maßgebenden Wärmestrom untersuchten. Die Modellergebnisse für den Bodenwärmestrom konnten durch die Entwicklung und Verwendung des neu entwickelten physikalischen Ansatzes von NSE < 0 und rRMSE von ca. 0,57 auf NSE von 0,19 und rRMSE von 0,35 verbessert werden. Dies führt zu einer insgesamt positiven Einschätzung des Verbesserungspotenzials des neu entwickelten Bodenwärmestromansatzes bei der Berechnung der Energiebilanz mit Hilfe von Fernerkundung. / The understanding of the hydrological and the energy cycles are essential in order to describe the complex interactions within the climate system of the earth. Being recognized as an important component of both, the water and the energy cycle, reliable estimation of actual evapotranspiration and its spatial distribution is one outstanding challenge in this context. Detailed knowledge of land surface fluxes, especially latent and sensible heat components, is important for monitoring the climate and land surface, and for agriculture applications such as irrigation scheduling and water management. The use of remote sensing data to determine actual evapotranspiration (ET) is particularly suitable to provide area based indicators for the evaluation of the efficiency and productivity of irrigation systems as well as sustainability studies. Accurate estimation of evapotranspiration plays an important role in quantification of the water balance at watershed, basin, and regional scale for better planning and managing water resources. For instance, in irrigation systems of arid regions, artificial locations of evapotranspiration have been created. An in-depth process understanding is of paramount importance, as irrigated agriculture consumes about 70 % of the available freshwater resources worldwide, with a significant but unsatisfyingly quantified impact on the water cycle, especially on regional scale. Moreover, an exact quantification of ET inside these artificial ecosystems enables assessments of crop water consumptions and hence about water use efficiency. The withdrawal of water for agricultural use in the countries of Central Asia is more than 90 %. For this thesis the residual methods of energy budget are of interest. One of the most common models dealing with energy budget residual is the Surface Energy Balance Algorithm for Land (SEBAL). SEBAL uses physical and empirical relationships to calculate the energy partitioning with minimum of ground data and atmospheric variables are estimated from remote sensing data. The determination of wet and dry surfaces is necessary to extract threshold values. SEBAL requires remote sensing input data like radiation, surface temperature, NDVI, and albedo. For this thesis an algorithm was developed based on SEBAL, its adaptations METRIC (Mapping Evapotranspiration with Internalized Calibration) and some regional adjustments. METRIC introduces the leaf area index (LAI) and land use classification data to determine the dry and hot surfaces as well as the input of additional meteorological data in order to improve the results of the model. Estimation of latent heat flux (LvE, corresponding to evapotranspiration) with SEBAL is based on assessing the energy balance through several surface properties such as albedo, LAI, NDVI, LST etc. Considering instantaneous condition, the energy balance is written as RN = LvE + H + G. Net radiation energy (RN) is available as the sum of the atmospheric convective fluxes sensible heat flux (H), latent heat flux (LvE) and the soil heat flux (G). The main objective of this thesis is to optimize, improve, and evaluate the existing remote sensing based algorithms for the estimation of actual evapotranspiration. For this purpose the seasonal actual ET was calculated using a partly modified SEBAL. SEBAL was implemented based on MODIS time series to solve the energy balance equation. The applied model has proven practicable for this area and is accepted to fulfil the scientific demands. The SEBAL algorithm is tested and set up for the use of 1km MODIS products. Land surface temperature (LST), emissivity, albedo, Normalized Differenced Vegetation Index (NDVI), and leaf area index (LAI) were combined for modelling the actual ET. Land use classification results were aggregated to 1km MODIS scale. Furthermore, the surface soil moisture products ASCAT SSM and ASAR SSM will be used as input data for the model. In addition to remote sensing data meteorological and ground truth data are used in this study. Meteorological data are wind speed, air temperature, relative humidity, and net radiation. The data is required at time of satellite overpass (about 12 p.m.). RN depends on incoming shortwave radiation, incoming and outgoing longwave radiant fluxes, albedo, emissivity and surface temperature. H is mostly calculated using the aerodynamic resistance between the surface and the reference height in the lower atmosphere (commonly 2 m) above surface. G is usually estimated using an empirical equation. This thesis introduces a modified equation to estimate G using an adjusted form of the thermal conduction equation. This method uses microwave soil moisture products (ASAR-SSM and ASCAT-SSM) as additional input information. The SEBAL modelled energy balance components were intensively validated by field measurements with an eddy covariance system and soil sensors in 2009, 2010, and 2011. The thesis is primarily concerned with the irrigation farming of cotton ecosystems in Central Asia, in particular with the situation within Khorezm Oblast in Uzbekistan. Regional problems of Khorezm are high groundwater levels, soil salinity, and non-sustainable use of land and water. Amongst others, the determination of ground truth data driven by the above mentioned objectives are part of two extensive field campaigns in 2010 and 2011. The validation of the modelled energy balance components leads to a good quality assessment. The model shows very good performance for RN with average model efficiency (NSE) of 0,68 and small relative errors (rRMSE) of about 0,10. For turbulent heat fluxes good results can be achieved with NSE of 0,31 for H and 0,55 for LE, the rRMSE are about 0,21 (H) and 0,18 (LvE). Soil heat flux estimation could be improved using the physically based approach. While the empirical equation leads to negative NSE and rRMSE of about 0,57, the improved approach shows rRMSE of 0,35 and NSE of 0,19. Thus, the improved G estimation can be registered as a valuable contribution for the remote sensing based estimation of energy balance components. / Die Bewässerungslandwirtschaft verbraucht weltweit etwa 70 % der verfügbaren Süßwasservorkommen. Dabei liegt die Wasserentnahme des landwirtschaftlichen Sektors in den Staaten Mittelasiens bei über 90 %. Wichtige Voraussetzungen für die Landwirtschaft sind der Produktionsfaktor Boden und das Klima. Der Wassergehalt und die Temperatur des Bodens bestimmen im Wesentlichen den Anteil der verfügbaren solaren Strahlungsenergie, der in den Boden geleitet wird. Existierende Fernerkundungsansätze verwenden zur Ermittlung des Bodenwärmestroms überwiegend empirische Gleichungen, da zuverlässige flächenhafte Informationen über die Bodenfeuchte bisher aufgrund räumlich unzureichender messtechnischer Bedingungen nicht ermittelt werden können. In der vorliegenden Arbeit wird ein neu entwickelter, physikalisch-basierter Ansatz vorgestellt, der erstmals räumlich hochaufgelöste Bodenfeuchteinformationen aus Radardatensätzen zur Berechnung des Bodenwärmestroms verwendet. Dieser Ansatz wird zur Lösung der Energiebilanz an der Erdoberfläche verwendet, um indirekt auf die tatsächlichen Evapotranspiration zu schließen. Denn eine realistische Quantifizierung der regionalen, tatsächlichen Evapotranspiration als Komponente der regionalen Wasserbilanz ist eine wichtige Steuerungsgröße und ein Effizienzindikator für das lokale Bewässerungsmanagement.
3

Experimentelle Bestimmung der Depositionsgeschwindigkeit luftgetragener Partikel mit Hilfe der Eddy-Kovarianzmethode über einem Fichtenaltbestand im Solling / Determination of dry deposition of airborne particles to a spruce forest by eddy-correlation

Bleyl, Matthias 30 January 2001 (has links)
No description available.

Page generated in 0.0706 seconds