• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contribution à l'homogénéisation des structures périodiques unidimensionnelles : application en biomécanique à la structure axonémale du flagelle et des cils vibratiles / Contribution to the homogenization of the unidimensional periodical structures : biomechanical application to the axonemal structure of the flagella and cilia

Toscano, Jérémy 18 December 2009 (has links)
Les structures treillis constituées d’un nombre important de barres sont largement utilisées, notamment en génie civil. L’étude par éléments finis de telles structures se révèle très coûteuse dès que la maille répétitive du treillis est complexe. Il s’avère intéressant de réduire la taille du problème en définissant un milieu continu équivalent. L’objectif de la première partie de ce travail est de proposer, en se plaçant dans le cadre des méthodes d’homogénéisation des milieux périodiques, une poutre de Timoshenko équivalente à une structure périodique dont l’une des dimension est grande par rapport aux deux autres. Une des originalités réside dans l’étude de cellules de base non symétriques. Par ailleurs, on s’intéresse à la prise en compte de déformations libres (par exemple, d’origine thermique) apparaissant à l’échelle microscopique. La seconde partie est consacrée à l’étude de la structure axonémale du flagelle et des cils vibratiles. Il s’agit de proposer et valider un modèle pour cette structure biomécanique complexe et d’appliquer ensuite la méthode d’homogénéisation proposée / Lattice structures are widely used, especially in civil engineering. The finite element analysis of such structures might require a consequent amount of computational time when the periodical mesh of this lattice is complex. Defining an equivalent continuous medium in order to reduce the size of the problem appears to be interesting. The aim of the first part of this document is to apply a homogenization method in order to find a Timoshenko beam model macroscopically equivalent to a slender structure which is periodical in the longitudinal direction. One of the unusual aspects tackled reside in the study of structures with periodical cells having a longitudinal asymmetry. In addition, the case of periodical structures with free deformation (e.g. thermal dilatation) at microscopic scale is dealt. The second part is consecrated to the study of the axonemal structure of the biological cell flagella and Cilia. A shorten version of the axonemal structure is studied at first and homogenized afterward
2

Méthodes de contrôle de la qualité de solutions éléments finis: applications à l'acoustique

Bouillard, Philippe 05 December 1997 (has links)
This work is dedicated to the control of the accuracy of computational simulations of sound propagation and scattering. Assuming time-harmonic behaviour, the mathematical models are given as boundary value problems for the Helmholtz equation <i>Delta u+k2u=0 </i> in <i>Oméga</i>. A distinction is made between interior, exterior and coupled problems and this work focuses mainly on interior uncoupled problems for which the Helmholtz equation becomes singular at eigenfrequencies. <p><p>As in other application fields, error control is an important issue in acoustic computations. It is clear that the numerical parameters (mesh size h and degree of approximation p) must be adapted to the physical parameter k. The well known ‘rule of the thumb’ for the h version with linear elements is to resolve the wavelength <i>lambda=2 pi k-1</i> by six elements characterising the approximability of the finite element mesh. If the numerical model is stable, the quality of the numerical solution is entirely controlled by the approximability of the finite element mesh. The situation is quite different in the presence of singularities. In that case, <i>stability</i> (or the lack thereof) is equally (sometimes more) important. In our application, the solutions are ‘rough’, i.e. highly oscillatory if the wavenumber is large. This is a singularity inherent to the differential operator rather than to the domain or the boundary conditions. This effect is called the <i>k-singularity</i>. Similarly, the discrete operator (“stiffness” matrix) becomes singular at eigenvalues of the discretised interior problem (or nearly singular at damped eigenvalues in solid-fluid interaction). This type of singularities is called the <i>lambda-singularities</i>. Both singularities are of global character. Without adaptive correction, their destabilizing effect generally leads to large error of the finite element results, even if the finite element mesh satisfies the ‘rule of the thumb’. <p><p>The k- and lambda-singularities are first extensively demonstrated by numerical examples. Then, two <i>a posteriori</i> error estimators are developed and the numerical tests show that, due to these specific phenomena of dynamo-acoustic computations, <i>error control cannot, in general, be accomplished by just ‘transplanting’ methods that worked well in static computations</i>. However, for low wavenumbers, it is necessary to also control the influence of the geometric (reentrants corners) or physical (discontinuities of the boundary conditions) singularities. An <i>h</i>-adaptive version with refinements has been implemented. These tools have been applied to two industrial examples :the GLT, a bi-mode bus from Bombardier Eurorail, and the Vertigo, a sport car from Gillet Automobiles.<p><p>As a conclusion, it is recommanded to replace the rule of the thumb by a criterion based on the control of the influence of the specific singularities of the Helmholtz operator. As this aim cannot be achieved by the <i>a posteriori</i> error estimators, it is suggested to minimize the influence of the singularities by modifying the formulation of the finite element method or by formulating a “meshless” method.<p> / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished

Page generated in 0.1043 seconds