• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Approximation de haute précision des problèmes de diffraction.

Laurens, Sophie 01 March 2010 (has links) (PDF)
Cette thèse examine deux façons de diminuer la complexité des problèmes de propagation d'ondes diffractées par un obstacle borné : la diminution des domaines de calcul à l'aide de milieux fictifs absorbants permettant l'adjonction de conditions aux limites exactes et la recherche d'une nouvelle approximation spatiale sous forme polynomiale donnant lieu à des schémas explicites où la stabilité est indépendante de l'ordre choisi. Dans un premier temps, on réduit le domaine de calcul autour de domaines non nécessairement convexes, mais propres aux problèmes de scattering (non trapping), à l'aide de la méthode des Perfectly Matched Layers (PML). Il faut alors considérer des domaines d'exhaustion difféomorphes à des convexes avec des hypothèses "presque" nécessaires. Pour les Equations de type Maxwell et Ondes, l'existence et l'unicité sont montrées dans tout l'espace et en domaine artificiellement borné, tant en fréquentiel qu'en temporel. La décroissance est analysée localement et asymptotiquement et des simulations numériques sont proposées. La deuxième partie de ce travail est une alternative à l'approximation de type Galerkin Discontinu, inspirée des résultats de régularité de J. Rauch, présentant l'avantage de conserver une condition CFL de type Volumes Finis indépendante de l'ordre d'approximation, aussi bien pour des maillages structurés que déstructurés. La convergence de cette méthode est démontrée via la consistance et la stabilité, grâce au théorème d'équivalence de Lax-Richtmyer pour des domaines structurés. En déstructuré, la consistance ne pouvant plus s'établir au moyen de la formulation de Taylor, la convergence n'est plus assurée, mais les premiers tests numériques bidimensionnels donnent d'excellents résultats.

Page generated in 0.0484 seconds