• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 19
  • 19
  • 19
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Electrical, mechanical and residual stress interactions in minerals comminution

Partridge, Anthony Charles January 1974 (has links)
No description available.
12

Study of a closed circuit jet mill plant using on-line particle size measurements

Gommeren, Henricus Jacobus Cornelis, January 1900 (has links)
Thesis (doctor)--Technische Universiteit Delft, 1997. / Vita. Includes bibliographical references.
13

Modelling the effect of mill length on the relationship between slurry hold-up and flowrate /

Tello, Sebastian. January 2002 (has links) (PDF)
Thesis (M.Eng.Sc.)--University of Queensland, 2003. / Includes bibliography.
14

Breakage mechanisms and resulting mineral liberation in a bead mill /

Andreatidis, J. P. January 1995 (has links) (PDF)
Thesis (M.Eng.Sc.) - University of Queensland, 1996. / Includes bibliography.
15

Electrical, mechanical and residual stress interactions in minerals comminution

Partridge, Anthony Charles January 1974 (has links)
No description available.
16

Empirical analysis of cutting force constants in micro end milling operations

Newby, Glynn 25 May 2005 (has links)
The development of miniaturized technologies has become a global phenomenon that continues to make an impact across a broad range of applications that encompasses many diverse fields and industries including telecommunications, portable consumer electronics, defense, and biomedical. Subsequently this trend has caused more and more interest in the issues involved in the design, development, operation and analysis of equipment and processes for manufacturing micro components. One technology used to create these miniaturized components is micro end milling. The cutting forces of the micro end milling process provide vital information for the design, modeling, and control of the machining process. To gain an understanding of forces in micro end milling operations, a model of average chip thickness is derived and the differences between conventional end milling and micro end milling are enumerated. From the experimental results, empirical models for specific cutting constants were derived and compared the generally accepted forms for conventional end milling operations. These models provide a tool for the estimation of cutting forces in micro end milling.
17

Investigation and design of wet-mill equipment and process technology.

Smith, Lisa Noelle. January 2003 (has links)
need to dry-mill the wheat into flour, and as a result, the total cost of conversion from wheat to bread is reduced. The resulting product has been perceived as being more filling than normal bread and it is also more nutritious and more affordable. The wet-mill concept was developed in a laboratory environment and no process methodology or equipment has existed to enable the technology to be used in a real bakery environment. The focus of this research was to design the particular equipment required for a medium plant-bakery production facility based on the wet-mill technology. Due to severe overcapacity in the bread-making industry, the research focuses on how best to integrate this equipment into an existing production facility. Three broad areas are investigated: • Product Development • Process Design • Machine Design The aim of the Product Development phase was to create a recipe that would withstand the rigours of the plant bakery environment, while at the same time satisfying consumer demand for taste and texture. The Process Design phase ensured that any new equipment had the capacity to match the throughput rate of the rest of the plant bakery, so that wet-mill dough could seamlessly continue downstream. Process control variables were examined to ensure that a consistent quality product was delivered. Inbound material handling was also investigated and designed to ensure safe and uncontaminated delivery of perishable raw material. Since the end product is edible, hygiene design requirements were also considered by completing a HACCP study to ensure a consumer-safe product. The Machine Design phase involves the development and design of a completely new food machine: a vertical wet-mill cutter. Many ideas are evaluated and a prototype machine, based on the optimal design, was built to test the concept. This prototype was then used to define process and design constraints for a scaled, large plantbakery machine. The final detailed design of a plant bakery wet-mill cutter was then completed. It includes drive, belt, bearing and pneumatic cylinder selection, and shaft and blade design. Safety considerations were an important part of the design process and production facility. Conformity to OHS Act regulations required investigation into the safe operation of the designed equipment with particular reference to driven and rotating machinery sub-regulations of the Act. A hazard analYSis and operability study was also undertaken. Lastly, the research calculates a financial valuation of the project to ascertain whether a plant baker should be interested in implementing wet-mill technology. The research concludes with a discussion of the various successes of the three research areas, and states any further investigation that may be required before full implementation. / Thesis (Ph.D.)-University of Natal, Durban, 2003.
18

Analysis of Deoxynivalenol and Deoxynivalenol-3-glucoside in Wheat

Burgess, Kimberly January 2012 (has links)
Deoxynivalenol (DON), a mycotoxin produced in cereal grains infected by Fusarium Head Blight produced by Fusarium graminearium and Deoxynivalenol-3-β-D-glucopyranoside (DON-3G), were studied during processing using LC-MS-MS and GC. DON reduced significantly (P<0.05) 61.8% during milling into flour. Therefore, DON was concentrated mostly in the bran and germ. DON increased 40.8% during the fermentation stage of baking. DON increased in dough more than flour and mixed dough. Milling reduced by 23.7% but fermentation did not. But bread was significantly lower in DON-3G at 0.15 ppm than flour and dough at 0.31 ppm. The baking increased DON and decreased DON-3G showing a difference in stability of the mycotoxins during processing. Enzyme hydrolysis on DON using α-amylase, cellulase, protease, and xylanase, showed a significant increase with cellulase (20.8%), protease (11.4%), and xylanase (35.6%) compared to wheat composite. DON may be bound to the cell wall or protein component of the kernel.
19

A mathematical programming based model and algorithm for a two stage production process

Kodialam, Muralidharan S. January 1987 (has links)
The research conducted in this thesis is concerned with the study of a two-stage production process existing at the Standard Register's (previously Burroughs Corporation) Paper Products Division plant in Rocky Mount, VA. The objective is to develop a mathematical programming based model and algorithm to allocate and sequence work orders in order to improve the plant's productivity and reduce the labor and material costs. The proposed algorithm is based on Lagrangian Relaxation and Benders' decomposition techniques, which exploit the inherent generalized assignment and travelling salesman problem substructures in the model. The algorithm is computationally intensive and generates (near) optimal solutions with a reasonable amount of effort. Heuristic algorithmic procedures for the generation of good solutions for large-sized problems is also proposed. / M.S.

Page generated in 0.0645 seconds