• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • Tagged with
  • 9
  • 9
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Techniques de Modélisation Moléculaire appliquées à l'Etude et à l'Optimisation de Molécules Immunogènes et de Modulateurs de la Chimiorésistance.

Fortuné, Antoine 21 December 2006 (has links) (PDF)
L'objet de ce travail est de présenter de facon détaillée des méthodes de modélisation appliquées à l'analyse des mécanismes de reconnaissance moléculaire et à la conception de nouveaux composés bioactifs selon deux approches : la conception basée sur la structure des récepteurs et la conception basée sur la structure des ligands.<br />Dans le cadre du premier axe, la méthode de construction de protéines par homologie de Blundell, implémentée dans le module COMPOSER de SYBYL et la méthode d'amarrage de Morris, implémentée dans le logiciel AUTODOCK3, sont décrites et appliquées à la modélisation et à l'étude des mécanismes de reconnaissance moléculaire d'un antigène polysaccharidique de la bactérie Shigella flexneri 5a et de mimes peptidiques immunogènes par un anticorps humain protecteur : IgA I3.<br />Dans le cadre du second axe, l'analyse statistique de descripteurs de champs d'interaction moléculaire de type CoMSIA et les méthodes de validation des modèles qu'elle génère sont présentées et appliquées à l'étude des relations structure activité en trois dimensions d'une série de 27 analogues de flavonoïdes modulateurs du transporteur ABCG2 (BCRP), impliqué dans le mécanisme de résistance multiple aux anticancéreux que développent les cellules tumorales. La production de modèles statistiquement fiables et performants a permis de concevoir de nouveaux composés biologiquement actifs.
2

Les azasulfurylpeptides : synthèse, analyse conformationnelle et applications biologiques

Turcotte, Stéphane 04 1900 (has links)
Les azasulfurylpeptides sont des mimes peptidiques auxquels le carbone en position alpha et le carbonyle d’un acide aminé sont respectivement remplacés par un atome d’azote et un groupement sulfonyle (SO2). Le but premier de ce projet a été de développer une nouvelle méthode de synthèse de ces motifs, également appelés N-aminosulfamides. À cette fin, l’utilisation de sulfamidates de 4-nitrophénol s’est avérée importante dans la synthèse des azasulfuryltripeptides, permettant le couplage d’hydrazides avec l’aide d’irradiation aux micro-ondes (Chapitre 2). Par la suite, en quantité stoechiométrique d’une base et d’un halogénure d’alkyle, les azasulfurylglycines (AsG) formés peuvent être chimiosélectivement alkylés afin d’y insérer diverses chaînes latérales. Les propriétés conformationnelles des N-aminosulfamides à l’état solide ont été élucidées grâce à des études cristallographiques par rayons X : elles possèdent une structure tétraédrique autour de l’atome de soufre, des traits caractéristiques des azapeptides et des sulfonamides, ainsi que du potentiel à favoriser la formation de tours gamma (Chapitre 3). Après le développement d’une méthode de synthèse des N-aminosulfamides en solution, une approche combinatoire sur support solide a également été élaborée sur la résine amide de Rink afin de faciliter la génération d’une librairie d’azasulfurylpeptides. Cette étude a été réalisée en employant le growth hormone releasing peptide 6 (GHRP-6, His-D-Trp-Ala-Trp-D-Phe-Lys-NH2). Ce dernier est un hexapeptide possédant une affinité pour deux récepteurs, le growth hormone secretagogue receptor 1a (GHS-R1a) et le récepteur cluster of differenciation 36 (CD36). Une affinité sélective envers le récepteur CD36 confère des propriétés thérapeutiques dans le traitement de la dégénérescence maculaire liée à l’âge (DMLA). Six analogues d’azasulfurylpeptides de GHRP-6 utilisés comme ligands du CD36 ont été synthétisés sur support solide, mettant en évidence le remplacement du tryptophane à la position 4 de GHRP-6 (Chapitre 4). Les analogues de GHRP-6 ont été ensuite analysés pour leur capacité à moduler les effets de la fonction et de la cascade de signalisation des ligands spécifiques au Toll-like receptor 2 (TLR2), en collaboration avec le Professeur Huy Ong du département de Pharmacologie à la Faculté de Pharmacie de l’Université de Montréal. Le complexe TLR2-TLR6 est reconnu pour être co-exprimé et modulé par CD36. En se liant au CD36, certains ligands de GHRP-6 ont eu un effet sur la signalisation du TLR2. Par exemple, les azasulfurylpeptides [AsF(4-F)4]- et [AsF(4-MeO)4]-GHRP-6 ont démontré une capacité à empêcher la surproduction du monoxyde d’azote (NO), un sous-produit réactif formé suite à l’induction d’un signal dans les macrophages par des ligands spécifiques liés au TLR2, tel le fibroblast-stimulating lipopeptide 1 (R-FSL-1) et l’acide lipotéichoïque (LTA). En addition, la sécrétion du tumor necrosis factor alpha (TNFa) et du monocyte chemoattractant protein 1 (MCP-1), ainsi que l’activation du nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), ont été réduites. Ces résultats démontrent le potentiel de ces azasulfurylpeptides à pouvoir réguler le rôle du TLR2 qui déclenche des réponses inflammatoires et immunitaires innées (Perspectives). Finalement, le potentiel des azasulfurylpeptides d’inhiber des métallo-bêta-lactamases, tels le New-Delhi Metallo-bêta-lactamase 1 (NDM-1), IMP-1 et le Verona Integron-encoded Metallo-bêta-lactamase 2 (VIM-2), a été étudié en collaboration avec le Professeur James Spencer de l’Université de Bristol (Royaumes-Unis). Certains analogues ont été des inhibiteurs micromolaires du IMP-1 (Perspectives). Ces nouvelles voies de synthèse des azasulfurylpeptides en solution et sur support solide devraient donc permettre leur utilisation dans des études de relations structure-activité avec différents peptides biologiquement actifs. En plus d'expandre l'application des azasulfurylpeptides comme inhibiteurs d'enzymes, cette thèse a révélé le potentiel de ces N-aminosulfamides à mimer les structures secondaires peptidiques, tels que les tours gamma. À cet égard, l’application des azasulfurylpeptides a été démontrée par la synthèse de ligands du CD36 présentant des effets modulateurs sur le TLR2. Compte tenu de leur synthèse efficace et de leur potentiel en tant qu’inhibiteurs, les azasulfurylpeptides devraient trouver une large utilisation dans les sciences de peptides pour des applications dans la médecine et de la chimie biologique. / The azasulfurylpeptides are peptide mimics in which the alpha carbon and the carbonyl of an amino acid residue are respectively replaced by a nitrogen atom and a sulfonyl group (SO2). The primary goal of this doctorate project was to develop a new effective method for the synthesis of these motifs, also called N-aminosulfamides. Towards this aim, the use of 4-nitrophenyl sulfamidates turned out to be important in the synthesis of azasulfuryltripeptides, allowing hydrazide couplings under micro-wave irradiation (Chapter 2). Side-chain diversity was then added using a stoichiometric amount of base and different alkyl halides to alkylate chemoselectively the azasulfurylglycine (AsG) residue. The conformational properties of the N-aminosulfamides in the solid state were studied using X-Ray crystallography, which showed a tetrahedral geometry about the sulfur atom, features of azapeptides and sulfonamides, as well as potential to favor the formation of gamma turns (Chapter 3). Following the development of the synthesis of these N-aminosulfamides in solution, a combinatorial approach on solid support was elaborated on Rink amide resin to generate a library of azasulfurylpeptides. The study was performed using the Growth Hormone Releasing Peptide 6 (GHRP-6, His-D-Trp-Ala-Trp-D-Phe-Lys-NH2). The latter is a hexapeptide that has affinity for two receptors, the Growth Hormone Secretagogue Receptor 1a (GHS-R1a) and the Cluster of Differenciation 36 (CD36) receptor. Selective binding to the CD36 receptor has therapeutic potential in the treatment of age-related macular degeneration (AMD). Six azasulfurylpeptide analogs were synthesized on solid support by replacing tryptophan at the 4th position of GHRP-6 with different N-aminosulfamide residues (Chapter 4). The GHRP-6 analogs were tested for their ability to mediate the effects of receptor-specific ligands on the function and downstream signaling of the Toll-Like Receptor 2 (TLR2), in collaboration with Professor Huy Ong at the department of Pharmacology in the Faculty of Pharmacy at the Université de Montréal. The TLR2-TLR6 complex is known to be co-expressed and modulated by CD36. On binding to CD36, certain GHRP-6 ligands exhibited effects on the signaling of TLR2. For example, the azasulfurylpeptides [4-F-AsF4]- and [4-MeO-AsF4]-GHRP-6 prevented the overproduction of nitric oxide (NO), a reactive oxygen species formed following the induction of signal in macrophages on binding of TLR2-specific ligands, such as the Fibroblast-Stimulating Lipopeptide 1 (R-FSL-1) and lipoteichoic acid (LTA). Furthermore, the secretion of the Tumor Necrosis Factor Alpha (TNFa) and Monocyte Chemoattractant Protein 1 (MCP-1), as well as the activation of the Nuclear Factor Kappa-light-chain-enhancer of activated B cells (NF-kB), all were reduced. These results offer promise for regulating Toll-like receptor roles in triggering innate immunity and inflammatory responses (Perspectives). Finally, the potential of the azasulfurylpeptides to inhibit metallo-bêta-lactamases, such as the New-Delhi Metallo-β-lactamase 1 (NDM-1), IMP-1 and the Verona Integron-encoded Metallo-bêta-lactamase 2 (VIM-2), has been studied in collaboration with Professor James Spencer at the University of Bristol (United-Kingdom). Some analogs were micromolar inhibitors of IMP-1 (Perspectives). These new approaches for the synthesis of azasulfurylpeptides in solution and on solid support should enable their use in studies of structure-activity relationships with different biologically active peptides. In addition to expanding the application of azasulfurylpeptides as enzyme inhibitors, this thesis has revealed the potential of these N-aminosulfamides to mimic the peptide secondary structures, such as gamma turns. Application of azasulfurylpeptides in this respect has been demonstrated by the synthesis of CD36 ligands exhibiting modulatory effects on the TLR2. Considering their effective synthesis and potential as inhibitors, azasulfurylpeptides should find broad use in peptide science for applications in medicine and chemical biology.
3

Synthèse de mimes peptidiques pyrrolo[3,2-e][1,4]diazépin-2-one

Deaudelin, Philippe January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
4

Synthèse de mimes peptidiques pyrrolo[3,2-e][1,4]diazépin-2-one

Deaudelin, Philippe January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
5

Synthèse des analogues de l’[azaPhe4]-GHRP-6 comme potentiels modulateurs du récepteur CD36

Chignen Possi, Kelvine 11 1900 (has links)
No description available.
6

Synthèse de prodrogues de l’[aza(p-MeO)F⁴]-GHRP-6, α-acyloxyéthyl carbamates, pour réguler le récepteur CD36

N'guessan, Ginette 09 1900 (has links)
Les prodrogues sont des dérivés biologiquement inactifs d’un principe actif qui, après administration à un organisme, subissent une transformation chimique ou enzymatique pour libérer le principe actif au site d’action. Elles améliorent les propriétés physicochimiques du principe actif pour permettre un meilleur transport à travers les barrières biologiques et pour augmenter l’activité in vivo. Elles sont utilisées pour améliorer la formulation et l’administration, accroître la perméabilité et l’absorption, modifier le profil de distribution et éviter le métabolisme et la toxicité. Cette approche est très utile pour améliorer l'administration de principes actifs. Il existe deux types de prodrogues : les prodrogues liées à un transporteur et les bioprécurseurs. Dans le premier cas, la molécule active est liée par une liaison covalente à un groupement temporaire, ce qui fournit une nouvelle molécule, qui est inactive. Le groupement temporaire libéré ne doit pas avoir, par lui-même, d'action pharmacologique ni de toxicité. Dans le second cas, le principe actif est transformé métaboliquement ou chimiquement par réaction d’hydratation, d’oxydation ou de réduction. Les azapeptides sont des mimes peptidiques dans lesquels un ou plusieurs carbones de la chaîne peptidique sont remplacés par des atomes d’azote. Ce remplacement augmente la rigidité de la chaîne peptidique et favorise le repliement de type β. Le repliement β des azapeptides est associé à plusieurs propriétés thérapeutiques. Certains azapeptides ont montré une meilleure activité, une meilleure sélectivité et une plus grande stabilité comparativement aux peptides parents ce qui prolonge leur durée d'action et les rend plus résistants aux dégradations métaboliques. Ce mémoire s’intéresse particulièrement à l’azapeptide : [aza(p-MeO)F⁴]-GHRP-6. Celui-ci est un analogue du peptide sécréteur d’hormone de croissance 6 (GHRP-6, H-His-D-Trp-Ala-Trp-D-Phe-Lys-NH₂), qui possède une affinité pour deux récepteurs distincts : les récepteurs de growth hormone secretagogue receptor 1a (GHS-R1a) et le récepteur cluster of differentiation 36 (CD36). L’[aza(p-MeO)F⁴]-GHRP-6 démontre une sélectivité envers le récepteur CD36 offrant des possibilités de traitement de maladies telles que l’athérosclérose et la dégénérescence maculaire liée à l’âge (DMLA). De plus, le récepteur CD36 peut interagir avec un corécepteur toll-like receptor 2 (TLR2), et l’[aza(p-MeO)F⁴]-GHRP-6 peut réduire des réponses immunitaires innées. La stratégie des prodrogues a été utilisée dans ce mémoire pour augmenter la durée d’action de l’azapeptide [aza(p-MeO)F⁴]-GHRP-6. Plus précisément, cinq analogues des prodrogues α-acyloxyéthylcarbamates de l’aza(p-MeO)F⁴-GHRP-6 ont été synthétisées. Ce mémoire présente la première synthèse de prodrogues α-acyloxyéthylcarbamates à caractère PEG de l’[aza(p-MeO)F⁴]-GHRP-6. / A prodrug is a biologically inactive derivative of a drug which after administration undergoes chemical or enzymatic modification to release the active drug at targeted sites of activity. Prodrugs improve physicochemical properties to enable better transport through biological barriers and enhance activity. They are used to improve formulation and administration, to enhance permeability and absorption, to modify distribution profiles and to avoid metabolism and toxicity. The prodrug approach is useful for improving drug delivery. Prodrugs are classified into two types: carrier-linked prodrugs and bio-precursors. In the first case, the parent drug is linked by a covalent bond to an inert carrier or transport moiety. The carrier should not be active or toxic. The active drug is released by a chemical or enzymatic cleavage in vivo. In the second case, the parent drug is converted metabolically or chemically by hydration, oxidation or reduction reactions. Azapeptides employ a semicarbazide as an amino amide surrogate in a peptide analog in which the backbone α-CH is replaced by nitrogen. Through electronic interactions, the semicarbazide favors backbone β-turn geometry due to a combination of urea planarity and hydrazine nitrogen lone pair – lone pair repulsion. Azapeptides have proven therapeutic utility. Some of them exhibit better selectivity, activity and stability than the parent peptides with increased duration of action and improved metabolic stability. Growth hormone releasing peptide-6 (GHRP-6, H-His-D-Trp-Ala-Trp-D-Phe-Lys-NH₂) is a synthetic peptide possessing an affinity for two different receptors: growth hormone secretagogue receptor 1a (GHS-R1a) and cluster of differentiation receptor 36 (CD36). The GHRP-6 azapeptide analogue, [aza(p-MeO)F⁴]-GHRP-6, has exhibited good affinity for CD36 and reduced nitric oxide overproduction in macrophage cells stimulated with the TLR-2 agonist R-FSL-1. Azapeptide ligands of CD36, such as [aza(p-MeO)F⁴]-GHRP-6, offers potential as prototypes for developing treatments of diseases such as atherosclerosis and age-related macular degeneration. A prodrug strategy has been pursued to improve the pharmacokinetic properties, such as duration of action, of [aza(p-MeO)F⁴]-GHRP-6. The first examples of α-acyloxyethyl carbamate peptides have been prepared. Five α-acyloxyethyl carbamate analogues of [aza(p-MeO)F⁴]-GHRP-6 have been synthesized by routes featuring acylation of the resin-bound peptide using different activated α-acyloxyethyl carbonates prior to resin cleavage and side chain deprotection. The evaluation of the activity of the pharmacokinetic properties of the [aza(p-MeO)F⁴]-GHRP-6 prodrugs is currently in progress and will be reported in due time.
7

Méthodologie pour la synthèse combinatoire d’azapeptides: application à la synthèse d’analogues aza-GHRP-6 en tant que ligands du récepteur CD36

Proulx, Caroline 07 1900 (has links)
Les azapeptides sont des mimes peptidiques où le carbone alpha d’un ou de plusieurs acides aminés est remplacé par un atome d’azote. Cette modification tend à stabiliser une conformation en repliement beta en raison de la répulsion électronique entre les paires d’électrons libres des atomes d’azote adjacents et de la géométrie plane de l’urée. De plus, le résidu semicarbazide a une meilleure résistance face aux protéases en plus d’être chimiquement plus stable qu’une liaison amide. Bien que les propriétés des azapeptides en fassent des mimes peptidiques intéressants, leurs méthodes de synthèses font appel à la synthèse laborieuse d’hydrazines substituées en solution. Le peptide sécréteur d’hormone de croissance 6 (GHRP-6, His-D-Trp-Ala-Trp-D-Phe-Lys-NH2) est un hexapeptide synthétique qui possède une affinité pour deux récepteurs distincts: les récepteurs GHS-R1a et CD36. Les travaux effectués au cours de mon doctorat qui seront détaillés dans cet ouvrage visent à atteindre deux objectifs: (1) le développement d’analogues du peptide GHRP-6 sélectif à un seul récepteur et (2) la mise au point d’une nouvelle méthodologie pour la synthèse combinatoire d’azapeptides. En réponse au premier objectif, la synthèse parallèle de 49 analogues aza-GHRP-6 a été effectuée et certains candidats sélectifs au récepteur CD36 ont été identifiés. L’étude de leurs propriétés anti-angiogéniques, effectuée par nos collaborateurs, a également permis d’identifier des candidats intéressants pour le traitement potentiel de la dégénérescence maculaire liée à l’âge. Une nouvelle approche pour la synthèse combinatoire d’azapeptides, faisant appel à l’alkylation et la déprotection chimiosélective d’une sous-unité semicarbazone ancrée sur support solide, a ensuite été développée. La portée de cette méthodologie a été augmentée par la découverte de conditions permettant l’arylation régiosélective de cette sous-unité semicarbazone, donnant accès à treize nouveaux dérivés aza-GHRP-6 possédant des résidus aza-arylglycines aux positions D-Trp2 et Trp4. L’élaboration de conditions propices à l’alkylation et la déprotection chimiosélective de la semicarbazone a donné accès à une variété de chaînes latérales sur l’acide aminé « aza » préalablement inaccessibles. Nous avons, entre autres, démontré qu’une chaîne latérale propargyl pouvait être incorporée sur l’acide aminé « aza ». Tenant compte de la réactivité des alcynes, nous avons ensuite élaboré des conditions réactionnelles permettant la formation in situ d’azotures aromatiques, suivie d’une réaction de cycloaddition 1,3-dipolaire sur support solide, dans le but d’obtenir des mimes de tryptophane. Sept analogues du GHRP-6 ont été synthétisés et testés pour affinité au récepteur CD36 par nos collaborateurs. De plus, nous avons effectué une réaction de couplage en solution entre un dipeptide possédant un résidu aza-propargylglycine, du paraformaldehyde et une variété d’amines secondaires (couplage A3) afin d’accéder à des mimes rigides d’aza-lysine. Ces sous-unités ont ensuite été incorporées sur support solide afin de générer sept nouveaux azapeptides avec des dérivés aza-lysine à la position Trp4 du GHRP-6. Enfin, une réaction de cyclisation 5-exo-dig a été développée pour la synthèse de N-amino imidazolin-2-ones en tant que nouveaux mimes peptidiques. Leur fonctionnalisation par une série de groupements benzyliques à la position 4 de l’hétérocycle a été rendue possible grâce à un couplage Sonogashira précédant la réaction de cyclisation. Les propriétés conformationnelles de cette nouvelle famille de composés ont été étudiées par cristallographie aux rayons X et spectroscopie RMN d’un tétrapeptide modèle. L’activité biologique de deux mimes peptidiques, possédant un résidu N-amino-4-méthyl- et 4-benzyl-imidazolin-2-one à la position Trp4 du GHRP-6, a aussi été examinée. L’ensemble de ces travaux devrait contribuer à l’avancement des connaissances au niveau des facteurs structurels et conformationnels requis pour le développement d’azapeptides en tant que ligands du récepteur CD36. De plus, les résultats obtenus devraient encourager davantage l’utilisation d’azapeptides comme peptidomimétiques grâce à leur nouvelle facilité de synthèse et la diversité grandissante au niveau de la chaîne latérale des acides aminés « aza ». / Azapeptides are peptide mimics in which the CH alpha in one or more amino acids has been replaced with a nitirogen atom. Such a modification tends to induce beta turn conformations in peptides, because of the consequences of lone–pair lone–pair repulsion between the two adjacent nitrogens and the planar geometry of the urea in the semicarbazide moiety. Furthermore, the semicarbazide increases protease resistance and is chemically more stable than its amide counterpart. Despite the potential advantages of using azapeptides mimics, their synthesis has been hampered by the solution-phase construction of substituted hydrazines prior to their incorporation into peptide sequences. Growth Hormone Releasing Peptide 6 sequence (GHRP-6, His-D-Trp-Ala-Trp-D-Phe-Lys-NH2) is a synthetic hexapeptide that binds to two distinct receptor: the Growth Hormone Secretatgogue Receptor 1a (GHS-R1a) and the Cluster of Differentiation 36 (CD36) receptor. The body of my Ph.D thesis has been generally targeted towards two objectives: (a) the development of azapeptide analogs of GHRP-6 with enhanced receptor selectivity and (b) the elaboration of a new synthetic approach for combinatorial submonomer azapeptide synthesis. In response to the first objective, 49 aza-GHRP-6 derivatives were synthesized and evaluated for receptor binding and biological activity. From this library, certain candidates were identified which exhibited decreased affinity for the GHS-R1a receptor with maintained affinity for the CD36 receptor. Furthermore, in studying their anti-angiogenic properties, our collaborators have identified aza-GHRP-6 analogs, which caused a marked decrease in microvascular sprouting in choroid explants, as well as another displaying potential to increase angiogenesis. A new approach for the combinatorial synthesis of azapeptides was developed to better conduct SAR studies using azapeptides. This method features the chemoselective alkylation and deprotection of a resin-bound semicarbazone building block. The scope of the methodology was further expanded by the development of reaction conditions for the chemoselective N-arylation of this semicarbazone residue, yielding 13 aza-GHRP-6 derivatives with aza-arylglycines residues at the D-Trp2 and Trp4 positions. The elaboration of a methodology based on the chemoselective alkylation and deprotection of a semicarbazone has allowed for greater aza-amino acid side chain diversity, enabling for example, the efficient incorporation of aza-propargylglycine residues into peptide sequences. Considering the reactivity of alkynes, we developed reaction conditions for in situ formation of aromatic azides, followed by a 1,3-dipolar cycloaddition reaction on solid support to yield aza-1-aryl,2,3-triazole-3-alanine residues as tryptophan mimics. Seven aza-GHRP-6 analogs were synthesized and subsequently tested for binding to the CD36 receptor by our collaborators. Moreover, the coupling reaction between an aza-propargylglycine-containing dipeptide building block, paraformaldehyde and a variety of secondary amines (A3 coupling) was accomplished in solution to provide access to rigid aza-lysine mimics. These aza-dipeptides were subsequently incorporated at the Trp4 position of seven new aza-GHRP-6 analogues using a solid-phase protocol, and the resulting azaLys mimics were tested for binding towards the CD36 receptor. Finally, conditions for a 5-exo-dig cyclization of an aza-propargylglycine residue were developed to give N-amino imidazolin-2-ones as turn-inducing peptide mimics. Their modification at the 4 position was achieved using a Sonogashira coupling protocol prior to the cyclization step. The conformational properties of these new heterocyclic motifs were assessed by X-ray crystallography and NMR spectroscopy on a tetrapeptide model system. The incorporation of N-amino-4-methyl- and 4-benzyl-imidazolin-2-ones at the Trp4 position of GHRP-6 was further accomplished and the biological evaluation of the peptidomimetics was examined. Taken together, these results should lead to a better understanding of the structural and conformational factors responsible for binding and biological activity of azapeptide ligands of the CD36 receptor. Furthermore, the submonomer approach for azapeptide synthesis developed should promote the use of azapeptides as peptide mimics, given its accessibility and the increased aza-amino acid side-chain diversity available.
8

Synthèse en phase solide de pyrrolo[3,2-e][1,4]diazépin-2-ones modulateurs du système urotensinergétique

Dufour-Gallant, Julien 04 1900 (has links)
Les pyrrolodiazépinones ont des activités biologiques intéressantes sur différents récepteurs biologiques, ce qui en font une cible de choix pour développer de nouvelles petites molécules biologiquement actives. Une méthodologie en solution a été développée pour synthétiser des pyrrolo[3,2-e][1,4]diazépin-2-ones, qui utilise la réaction de Pictet-Spengler pour former le cycle diazépinone, comme réaction clé. Il a été démontré que le pyrrolo[3,2-e][1,4]diazépin-2-one mime un tour-γ inverse par l’analyse de cristaux par rayon X. Cette méthodologie a été transposée sur trois types de support, soit la résine de Merrifield, de Wang et un support soluble (TAP). Le système urotensinergétique joue un rôle dans certaines pathologies du système cardiovasculaire, comme l’hypertension artérielle, l’insuffisance cardiaque et l’athérosclérose. Le système urotensinergétique est exprimé dans le système circulatoire, extractoire et le système nerveux central et comprend l’UII, l’URP et le récepteur UT. L’UII et l’URP humains sont composés respectivement des séquences d’acides aminés : H-Glu-Thr-Pro-Asp-c[Cys-Phe-Trp-Lys-Tyr-Cys]-Val-OH et H-Ala-c[Cys-Phe-Trp-LysTyr-Cys]-Val-OH. L’UII est le peptide vasoconstricteur le plus puissant connu à ce jour, dont l’URP est son isoforme. Les deux peptides ont des effets biologiques différents et on peut supposer qu’ils jouent un rôle distinct dans certaines pathologies. Il a été démontré que la partie active de l’UII est composée du tripeptide : Trp-Lys-Tyr. Dans l’URP, il a été démontré que ce tripeptide forme un tour-γ inverse, ce qui fait du récepteur UT une bonne cible biologique pour tester une librairie de pyrrolo[3,2-e][1,4]diazépin-2-ones, reprenant le tripeptide Trp-Lys-Tyr. Dernièrement, l’équipe du professeur David Chatenet a mis au point un peptide, l’urocontrin en remplaçant le segment Trp par un groupement biphénylalanine, qui a démontré un comportement spécifique comme antagoniste du récepteur UT. La Librairie de pyrrolo[3,2-e][1,4]diazépin-2-ones est basée sur la séquence TrpLys-Tyr de l’UII et de l’URP et de la séquence Trp-Lys-Bip de l’urocontrin. La synthèse de la librairie est faite sur la résine de Wang. La chaîne latérale de Tyr est mimée en utilisant la tyramine, Lys et Orn sont utilisés et la chaîne latérale de Trp a été reproduite II en utilisant le biphényle (comme dans l’urocontrin), le 1-naphthyle et le 2-naphthyle, sont introduits en employant les aldéhydes respectifs dans la réaction de Pictet-Spengler, ce qui donne les pyrrolo[3,2-e][1,4]diazépin-2-ones insaturés et les saturés S- et R-. L’évaluation de l’activité biologique des pyrrolo[3,2-e][1,4]diazépin-2-ones obtenues sur le récepteur UT se fait par des tests in vitro et ex vivo. Les tests in vitro consistent en un essai de liaisons sur des cellules CHO exprimant le récepteur UT en employant hUII-125I, comme contrôle radiomarqé. Les tests ex vivo sont effectués sur des aortes de rats pour mesurer la capacité à induire des contractions ou de moduler les contractions induites par hUII et URP. Certains R-pyrrolo[3,2-e][1,4]diazépin-2-ones causent une réduction de 50% du signal radioactivité du hUII-125I. Les pyrrolo[3,2-e][1,4]diazépin-2-ones ne montrent guère d’activité ex vivo, mais ils ont la capacité de moduler les contractions induites par l’hUII et l’URP. Par exemple, l’analogue Lys R-saturé avec le biphényle inhibe toutes les contractions de l’aorte à 14 µM avec un pKb de 5,54 à 4 µM, sans influencer les contractions de l’aorte induites par l’URP. Les pyrrolo[3,2-e][1,4]diazépin-2-ones ont une sélectivité pour le système urotensinergétique et sont inactifs sur le récepteur de l’endotheline-1. Les pyrrolo[3,2-e][1,4]diazépin-2-ones sont les premières petites molécules qui peuvent moduler l’activité biologique de l’UII et URP et offrir un potentiel intéressant comme outil pour étudier le système urotensinergétique. / The pyrrolodiazepinones have interesting biological activities on various biological receptors, which makes them a prime target for developing new biologically active small molecules. A methodology in solution had been developed for synthesizing pyrrolo[3,2-e][1,4]diazepin-2-ones, which utilized the Pictet-Spengler condensation as the key reaction to form the diazepinone ring. Pyrrolo[3,2-e][1,4]diazepin-2-ones were found to mimic an inverse γ-turn conformation by X-ray crystallographic analysis. The methodology was subsequently implemented on three types of support: Merrifield resin, Wang resin and the soluble TAP support. The urotensinergic system plays a role in certain diseases of the cardiovascular system, such as hypertension, heart failure and atherosclerosis. The urotensinergic system is expressed in the circulatory system, excretory and central nervous systems and includes the endogenous ligands urotensin II (UII) and urotensin II-related peptide (URP), and the urotensin receptor UT. The ligands UII and human URP are composed of the respective amino acid sequences: H-Glu-Thr-Pro-Asp-c[Cys-Phe-Trp-Lys-Tyr-Cys]-Val-OH and H-Ala-c[Cys-Phe-Lys-Tyr-Trp-Cys]-Val-OH. The peptide UII is the most potent vasoconstrictor known to date. The two peptides have different biological effects and may exhibit distinct roles in certain diseases. Their common Trp-Lys-Tyr sequence is believed to play an important role in the activity of UII and URP, and has been suggested to adopt an inverse γ-turn conformation. Notably, the laboratory of Professor David Chatenet developed the UT receptor antagonist peptide urocontrin by replacing the Trp residue by biphenylalanine (Bip) in URP. A library of pyrrolo[3,2-e][1,4]diazepin-2-one analogs was thus designed to mimic the inverse γ-turn sequence and targeted against UT. The pyrrolo[3,2-e][1,4]diazepin-2-one library was designed based on the Trp-Lys-Tyr sequence of UII and URP, and Trp-Lys-Bip sequence of urocontrin. The synthesis of the pyrrolo[3,2-e][1,4]diazepin-2-one library was achieved on Wang resin. The side chain of Tyr was mimicked using tyramine, Lys and Orn were used as the basic amino acid component, and the side chain of Trp was replicated using biphenyl (as in urocontrin) 1-naphthyl and 2-naphthyl groups that were introduced by employing their respective aldehydes in a Pictet-Spengler reaction, which furnished unsaturated and saturated S- and R-pyrrolo[3,2-e][1,4]diazepin-2-ones. Evaluation of the biological activity of the pyrrolo[3,2-e][1,4]diazepin-2-ones on the UT receptor was performed in vitro and ex vivo. Tests in vitro measured binding in CHO-cells which expressed UT by employing hUII-125I as radiolabeled control. In rat aorta, ex vivo tests measured capacity to induce contraction, or modulate the contractions induced by hUII and URP. Certain R-pyrrolo[3,2-e][1,4]diazepin-2-ones caused an up to 50% reduction of the radioactive signal of hUII-125I. Pyrrolo[3,2-e][1,4]diazepin-2-ones exhibited little activity ex vivo; however, they modulated contractions induced by hUII and URP. For example, the saturated R-analog possessing lysine and a biphenyl side chain inhibited completely hUII-induced contractions of the aorta at 14 µM with a pKb of 5.54 at 4 µM, without influencing URP-induced contractions. Pyrrolo[3,2-e][1,4]diazepin-2-ones were selective for the urotensinergic system and inactive on the related receptor endothelin-1. Pyrrolo[3,2-e][1,4]diazepin-2-ones represent the first small molecules that can differently modulate the biological activities of UII and URP, and offer interesting potential as tools for studying the urotensinergic system.
9

Méthodologie pour la synthèse combinatoire d’azapeptides: application à la synthèse d’analogues aza-GHRP-6 en tant que ligands du récepteur CD36

Proulx, Caroline 07 1900 (has links)
Les azapeptides sont des mimes peptidiques où le carbone alpha d’un ou de plusieurs acides aminés est remplacé par un atome d’azote. Cette modification tend à stabiliser une conformation en repliement beta en raison de la répulsion électronique entre les paires d’électrons libres des atomes d’azote adjacents et de la géométrie plane de l’urée. De plus, le résidu semicarbazide a une meilleure résistance face aux protéases en plus d’être chimiquement plus stable qu’une liaison amide. Bien que les propriétés des azapeptides en fassent des mimes peptidiques intéressants, leurs méthodes de synthèses font appel à la synthèse laborieuse d’hydrazines substituées en solution. Le peptide sécréteur d’hormone de croissance 6 (GHRP-6, His-D-Trp-Ala-Trp-D-Phe-Lys-NH2) est un hexapeptide synthétique qui possède une affinité pour deux récepteurs distincts: les récepteurs GHS-R1a et CD36. Les travaux effectués au cours de mon doctorat qui seront détaillés dans cet ouvrage visent à atteindre deux objectifs: (1) le développement d’analogues du peptide GHRP-6 sélectif à un seul récepteur et (2) la mise au point d’une nouvelle méthodologie pour la synthèse combinatoire d’azapeptides. En réponse au premier objectif, la synthèse parallèle de 49 analogues aza-GHRP-6 a été effectuée et certains candidats sélectifs au récepteur CD36 ont été identifiés. L’étude de leurs propriétés anti-angiogéniques, effectuée par nos collaborateurs, a également permis d’identifier des candidats intéressants pour le traitement potentiel de la dégénérescence maculaire liée à l’âge. Une nouvelle approche pour la synthèse combinatoire d’azapeptides, faisant appel à l’alkylation et la déprotection chimiosélective d’une sous-unité semicarbazone ancrée sur support solide, a ensuite été développée. La portée de cette méthodologie a été augmentée par la découverte de conditions permettant l’arylation régiosélective de cette sous-unité semicarbazone, donnant accès à treize nouveaux dérivés aza-GHRP-6 possédant des résidus aza-arylglycines aux positions D-Trp2 et Trp4. L’élaboration de conditions propices à l’alkylation et la déprotection chimiosélective de la semicarbazone a donné accès à une variété de chaînes latérales sur l’acide aminé « aza » préalablement inaccessibles. Nous avons, entre autres, démontré qu’une chaîne latérale propargyl pouvait être incorporée sur l’acide aminé « aza ». Tenant compte de la réactivité des alcynes, nous avons ensuite élaboré des conditions réactionnelles permettant la formation in situ d’azotures aromatiques, suivie d’une réaction de cycloaddition 1,3-dipolaire sur support solide, dans le but d’obtenir des mimes de tryptophane. Sept analogues du GHRP-6 ont été synthétisés et testés pour affinité au récepteur CD36 par nos collaborateurs. De plus, nous avons effectué une réaction de couplage en solution entre un dipeptide possédant un résidu aza-propargylglycine, du paraformaldehyde et une variété d’amines secondaires (couplage A3) afin d’accéder à des mimes rigides d’aza-lysine. Ces sous-unités ont ensuite été incorporées sur support solide afin de générer sept nouveaux azapeptides avec des dérivés aza-lysine à la position Trp4 du GHRP-6. Enfin, une réaction de cyclisation 5-exo-dig a été développée pour la synthèse de N-amino imidazolin-2-ones en tant que nouveaux mimes peptidiques. Leur fonctionnalisation par une série de groupements benzyliques à la position 4 de l’hétérocycle a été rendue possible grâce à un couplage Sonogashira précédant la réaction de cyclisation. Les propriétés conformationnelles de cette nouvelle famille de composés ont été étudiées par cristallographie aux rayons X et spectroscopie RMN d’un tétrapeptide modèle. L’activité biologique de deux mimes peptidiques, possédant un résidu N-amino-4-méthyl- et 4-benzyl-imidazolin-2-one à la position Trp4 du GHRP-6, a aussi été examinée. L’ensemble de ces travaux devrait contribuer à l’avancement des connaissances au niveau des facteurs structurels et conformationnels requis pour le développement d’azapeptides en tant que ligands du récepteur CD36. De plus, les résultats obtenus devraient encourager davantage l’utilisation d’azapeptides comme peptidomimétiques grâce à leur nouvelle facilité de synthèse et la diversité grandissante au niveau de la chaîne latérale des acides aminés « aza ». / Azapeptides are peptide mimics in which the CH alpha in one or more amino acids has been replaced with a nitirogen atom. Such a modification tends to induce beta turn conformations in peptides, because of the consequences of lone–pair lone–pair repulsion between the two adjacent nitrogens and the planar geometry of the urea in the semicarbazide moiety. Furthermore, the semicarbazide increases protease resistance and is chemically more stable than its amide counterpart. Despite the potential advantages of using azapeptides mimics, their synthesis has been hampered by the solution-phase construction of substituted hydrazines prior to their incorporation into peptide sequences. Growth Hormone Releasing Peptide 6 sequence (GHRP-6, His-D-Trp-Ala-Trp-D-Phe-Lys-NH2) is a synthetic hexapeptide that binds to two distinct receptor: the Growth Hormone Secretatgogue Receptor 1a (GHS-R1a) and the Cluster of Differentiation 36 (CD36) receptor. The body of my Ph.D thesis has been generally targeted towards two objectives: (a) the development of azapeptide analogs of GHRP-6 with enhanced receptor selectivity and (b) the elaboration of a new synthetic approach for combinatorial submonomer azapeptide synthesis. In response to the first objective, 49 aza-GHRP-6 derivatives were synthesized and evaluated for receptor binding and biological activity. From this library, certain candidates were identified which exhibited decreased affinity for the GHS-R1a receptor with maintained affinity for the CD36 receptor. Furthermore, in studying their anti-angiogenic properties, our collaborators have identified aza-GHRP-6 analogs, which caused a marked decrease in microvascular sprouting in choroid explants, as well as another displaying potential to increase angiogenesis. A new approach for the combinatorial synthesis of azapeptides was developed to better conduct SAR studies using azapeptides. This method features the chemoselective alkylation and deprotection of a resin-bound semicarbazone building block. The scope of the methodology was further expanded by the development of reaction conditions for the chemoselective N-arylation of this semicarbazone residue, yielding 13 aza-GHRP-6 derivatives with aza-arylglycines residues at the D-Trp2 and Trp4 positions. The elaboration of a methodology based on the chemoselective alkylation and deprotection of a semicarbazone has allowed for greater aza-amino acid side chain diversity, enabling for example, the efficient incorporation of aza-propargylglycine residues into peptide sequences. Considering the reactivity of alkynes, we developed reaction conditions for in situ formation of aromatic azides, followed by a 1,3-dipolar cycloaddition reaction on solid support to yield aza-1-aryl,2,3-triazole-3-alanine residues as tryptophan mimics. Seven aza-GHRP-6 analogs were synthesized and subsequently tested for binding to the CD36 receptor by our collaborators. Moreover, the coupling reaction between an aza-propargylglycine-containing dipeptide building block, paraformaldehyde and a variety of secondary amines (A3 coupling) was accomplished in solution to provide access to rigid aza-lysine mimics. These aza-dipeptides were subsequently incorporated at the Trp4 position of seven new aza-GHRP-6 analogues using a solid-phase protocol, and the resulting azaLys mimics were tested for binding towards the CD36 receptor. Finally, conditions for a 5-exo-dig cyclization of an aza-propargylglycine residue were developed to give N-amino imidazolin-2-ones as turn-inducing peptide mimics. Their modification at the 4 position was achieved using a Sonogashira coupling protocol prior to the cyclization step. The conformational properties of these new heterocyclic motifs were assessed by X-ray crystallography and NMR spectroscopy on a tetrapeptide model system. The incorporation of N-amino-4-methyl- and 4-benzyl-imidazolin-2-ones at the Trp4 position of GHRP-6 was further accomplished and the biological evaluation of the peptidomimetics was examined. Taken together, these results should lead to a better understanding of the structural and conformational factors responsible for binding and biological activity of azapeptide ligands of the CD36 receptor. Furthermore, the submonomer approach for azapeptide synthesis developed should promote the use of azapeptides as peptide mimics, given its accessibility and the increased aza-amino acid side-chain diversity available.

Page generated in 0.081 seconds