• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 12
  • 12
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 55
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rôle des récepteurs Toll-like et de CD14 dans la réponse à Listeria monocytogenes et à la flagelline extraite de Salmonella typhimurium / Implication of the Toll-Like Receptor and CD14 in response to Listeria monocytogenes and flagellin from Salmonella typhimurium

Janot, Laure 18 February 2009 (has links)
L’organisme est exposé à divers agents infectieux et doit mettre en place une réponse immunitaire adéquate pour se protéger. Mes travaux de thèse m’ont permis d’étudier la réponse innée à l’infection par Listeria monocytogenes (L.m) et l’inflammation pulmonaire induite par la flagelline extraite de Salmonella typhimurium. Mes résultats ont mis en évidence l’association du co-récepteur CD14 avec TLR2 (Toll-like Receptor 2) dans la détection de L.m injectée par voie veineuse. En revanche, CD14 ne semble pas être associé au TLR5 dans la reconnaissance de la flagelline. Par ailleurs, l’activation des TLR par leurs ligands permet la synthèse de cytokines intervenant dans l’inflammation. J’ai ainsi pu étudier plus précisément le TNF (Tumor Necrosis Factor). Cette protéine pro-inflammatoire est un des médiateurs principaux de l’immunité et existe sous une forme membranaire qui a été peu étudiée (Mem-TNF) et sous une forme soluble bien connue (sTNF). Mes études ont montré que ce Mem-TNF active la production de cytokines et de médiateurs chimiques de l’inflammation conférant une protection partielle contre Listéria. L’étude de cette cytokine membranaire nous a permis de tester une nouvelle génération de traitements moins agressifs que les anti-TNF contre l’arthrite rhumatoïde ou la maladie de Crohn. / Toll-like receptors (TLRs) recognize a wide range of microbial pathogens and their products modulate the innate immune response that may lead to inflammation. In order to better understand the host-pathogen relationship, we have studied the implication of the co-receptor CD14 in the innate immune response to Listeria monocytogenes and to the bacterial flagellin from Salmonella typhimurium. Our results clearly show that TLR2 requires CD14 to control Listeria infection whereas TLR5 does not. Moreover, TLR activation leads to pro-inflammatory cytokines production such as Tumor Necrosis Factor (TNF). This pleiotropic protein is required for normal development and function of the immune system. TNF can be secreted (sTNF) or associated to the membrane (Mem-TNF). Our results suggest that Mem-TNF can activate the synthesis of cytokines and chemicals mediators of inflammation and partially protect mice from a moderate infection. These experiments open new avenues for the treatment of inflammatory disease like rheumatoid arthritis or Crohn disease.
2

Synthetic Resveratrol Aliphatic Acid Inhibits tlr2-Mediated Apoptosis and an Involvement of Akt/GSK3β Pathway

Chen, Lin, Zhang, Yi, Sun, Xiuli, Li, Hui, LeSage, Gene, Javer, Avani, Zhang, Xiumei, Wei, Xinbing, Jiang, Yulin, Yin, Deling 01 July 2009 (has links)
As resveratrol derivatives, resveratrol aliphatic acids were synthesized in our laboratory. Previously, we reported the improved pharmaceutical properties of the compounds compared to resveratrol, including better solubility in water and much tighter binding with human serum albumin. Here, we investigate the role of resveratrol aliphatic acids in Toll-like receptor 2 (TLR2)-mediated apoptosis. We showed that resveratrol aliphatic acid (R6A) significantly inhibits the expression of TLR2. In addition, overexpression of TLR2 in HEK293 cells caused a significant decrease in apoptosis after R6A treatment. Moreover, inhibition of TLR2 by R6A decreases serum deprivation-reduced the levels of phosphorylated Akt and phosphorylated glycogen synthase kinase 3β (GSK3β). Our study thus demonstrates that the resveratrol aliphatic acid inhibits cell apoptosis through TLR2 by the involvement of Akt/GSK3β pathway.
3

The Role of TLR2 in the Pathogenesis of Kawasaki Disease

Wardinger, Jaimie 23 July 2012 (has links)
Kawasaki disease (KD) is a childhood vasculitis with a predilection for the coronary arteries (CA). The etiology of KD is unknown; however, superantigens (SAg) have been implicated. SAg-activated T cells undergo massive proliferation followed by apoptosis; conversely, in KD these T cells may persist and target the CAs. Enhanced costimulation can rescue SAg-activated T cells from apoptosis, and Toll-like receptor 2 (TLR2) enhances costimulation. In a murine model of KD, TLR2-deficient mice are disease resistant, and evidence suggests preferential expression of TLR2 at the CA. Results from this study demonstrate that TLR2 is rapidly expressed in the heart following disease induction, and that TLR2 is expressed differentially in various arteries. The aorta, from which the CAs branch off, expressed the highest TLR2 levels. A microvascular endothelial cell line was shown to function as an APC following TLR2 stimulation, supporting the proliferation of SAg-activated T cells and their rescue from apoptosis.
4

The Role of TLR2 in the Pathogenesis of Kawasaki Disease

Wardinger, Jaimie 23 July 2012 (has links)
Kawasaki disease (KD) is a childhood vasculitis with a predilection for the coronary arteries (CA). The etiology of KD is unknown; however, superantigens (SAg) have been implicated. SAg-activated T cells undergo massive proliferation followed by apoptosis; conversely, in KD these T cells may persist and target the CAs. Enhanced costimulation can rescue SAg-activated T cells from apoptosis, and Toll-like receptor 2 (TLR2) enhances costimulation. In a murine model of KD, TLR2-deficient mice are disease resistant, and evidence suggests preferential expression of TLR2 at the CA. Results from this study demonstrate that TLR2 is rapidly expressed in the heart following disease induction, and that TLR2 is expressed differentially in various arteries. The aorta, from which the CAs branch off, expressed the highest TLR2 levels. A microvascular endothelial cell line was shown to function as an APC following TLR2 stimulation, supporting the proliferation of SAg-activated T cells and their rescue from apoptosis.
5

Essential Role of Toll-Like Receptor 2 in Morphine-Induced Microglia Activation in Mice

Zhang, Yi, Li, Hui, Li, Yi, Sun, Xiuli, Zhu, Meng-Yang, Hanley, Gregory, LeSage, Gene, Yin, Deling 01 February 2011 (has links)
Opioids are powerful pain relievers, but also potent inducers of dependence and tolerance. Chronic morphine administration (via subcutaneous pellet) induces morphine dependence in the nucleus accumbens, an important dependence region in the brain, yet the cellular mechanisms are mostly unknown. Toll-like receptor 2 (TLR2) plays an essential function in controlling innate and inflammatory responses. Using a knockout mouse lacking TLR2, we assessed the contribution of TLR2 to microglia activation and development of morphine dependence. We report here that mice deficient in TLR2 inhibit morphine-induced the levels of microglia activation and proinflammatory cytokines. Moreover, in TLR2 knockout mice the main symptoms of morphine withdrawal were significantly attenuated. Our data reveal that TLR2 plays a critical role in morphine-induced microglia activation and dependence.
6

Toll-Like Receptor 2 Is Required for Opioids-Induced Neuronal Apoptosis

Li, Yi, Li, Hui, Zhang, Yi, Sun, Xiuli, Hanley, Gregory A., LeSage, Gene, Zhang, Ying, Sun, Shenggang, Peng, Ying, Yin, Deling 01 January 2010 (has links)
Toll-like receptor 2 (TLR2), a key immune receptor in the TLR family, is widely expressed in various systems, including the immune and nervous systems and plays a critical role in controlling innate and adaptive immune responses. We previously reported that opioids inhibit cell growth and trigger apoptosis. However, the underlying mechanism by which TLR2 mediates apoptosis in response to opioids is not yet known. Here we show that chronic morphine treatment in primary neurons dramatically increased the expression of TLR2 at both the messenger RNA and protein levels. In addition, TLR2 deficiency significantly inhibited chronic morphine-induced apoptosis in primary neurons. Activation of caspase-3 after morphine treatment is impaired in TLR2 deficient primary neurons. Moreover, morphine treatment failed to induce an increased level of phosphorylated glycogen synthase kinase 3 beta (GSK3β) in TLR2 deficient primary neurons, suggesting an involvement of GSK3β in morphine-mediated TLR2 signaling. These results thus demonstrate that opioids prime neurons to undergo apoptosis by inducing TLR2 expression. Our data suggest that inhibition of TLR2 is capable of preventing opioids-induced damage to neurons.
7

Differential Roles of TLR2 and TLR4 in Acute Focal Cerebral Ischemia/Reperfusion Injury in Mice

Hua, Fang, Ma, Jing, Ha, Tuanzhu, Kelley, Jim L., Kao, Race L., Schweitzer, John B., Kalbfleisch, John H., Williams, David L., Li, Chuanfu 25 March 2009 (has links)
Recent studies have shown that Toll-like receptors (TLRs) are involved in cerebral ischemia/reperfusion (I/R) injury. This study was to investigate the role of TLR2 and TLR4 in acute focal cerebral I/R injury. Cerebral infarct size, neurological function and mortality were evaluated. NFk{cyrillic}B binding activity, phosphorylation of Ik{cyrillic}Bα, Akt and ERK1/2 were examined in ischemic cerebral tissue by EMSA and Western blots. Compared to wild type (WT) mice, in TLR4 knockout (TLR4KO) mice, brain infarct size was decreased (2.6 ± 1.18% vs 11.6 ± 1.97% of whole cerebral volume, p < 0.05) and neurological function was maintained (7.3 ± 0.79 vs 4.7 ± 0.68, p < 0.05). However, compared to TLR4KO mice, TLR2 knockout (TLR2KO) mice showed higher mortality (38.2% vs 13.0%, p < 0.05), decreased neurological function (2.9 ± 0.53 vs 7.3 ± 0.79, p < 0.05) and increased brain infarct size (19.1 ± 1.33% vs 2.6 ± 1.18%, p < 0.05). NFk{cyrillic}B activation and Ik{cyrillic}Bα phosphorylation were attenuated in TLR4KO mice (1.09 ± 0.02 and 1.2 ± 0.04) compared to TLR2KO mice (1.31 ± 0.02 and 2.2 ± 0.32) after cerebral ischemia. Compared to TLR4KO mice, in TLR2KO mice, the phosphorylation of Akt (0.2 ± 0.03 vs 0.9 ± 0.16, p < 0.05) and ERK1/2 (0.8 ± 0.06 vs 1.3 ± 0.17) evoked by cerebral I/R was attenuated. The present study demonstrates that TLR2 and TLR4 play differential roles in acute cerebral I/R injury. Specifically, TLR4 contributes to cerebral I/R injury, while TLR2 appears to be neuroprotective by enhancing the activation of protective signaling in response to cerebral I/R.
8

Role of Mal/TIRAP in TLR2- and TLR4-, but not TLR5-Induced Corneal Inflammation

Williams, Susan R. 23 January 2010 (has links)
No description available.
9

Lipoprotein LprG Enhances TLR2 Agonism of Mycobacterium tuberculosis

Arida, Ahmad Raslan January 2011 (has links)
No description available.
10

Influência dos receptores TLR4 e TLR2 nos efeitos comportamentais e bioquímicos induzidos pela dieta intermitente em camundongos nocaute. / Influence of TLR4 and TLR2 in behavioral and biochemical effects induced by intermittent fasting in knockout mice.

Vasconcelos, Andrea Rodrigues 25 May 2016 (has links)
A dieta intermitente (DI) estimula mecanismos de defesa do organismo, tornando-o mais resistente a estímulos tóxicos. A DI parece atuar em vias associadas à resposta inflamatória, autofagia, sobrevivência celular e aumenta a resistência contra estresse oxidativo. No entanto, pouco se sabe sobre o papel dos receptores TLR4 e TLR2 nos efeitos da DI. Este trabalho avaliou a influência do TLR4 e TLR2 nos efeitos da DI sobre a memória e a sinalização associada aos fatores de transcrição NF-&#954;B, NRF2 e FOXO em camundongos nocaute para TLR4 ou TLR2. Os resultados sugerem que o TLR4 e TLR2 participam da modulação pela DI dos níveis de estresse oxidativo, biomarcadores periféricos e do NF-&#954;B, CREB, AP1, NRF2, além das proteínas moduladas por esses fatores de transcrição como o BDNF, HO1, enzimas antioxidantes, chaperonas e citocinas. Esses resultados permitem um maior entendimento dos processos fisiológicos que visam o desenvolvimento de novas intervenções farmacológicas para a promoção da longevidade, envelhecimento saudável e o tratamento de distúrbios neurodegenerativos. / Intermittent fasting (IF) stimulates the body\'s defense mechanisms, making it more resistant to toxic stimuli. IF seems to act by mechanisms associated with cell survival, autophagy, inflammation and enhancing oxidative stress resistance, thereby involving the modulation of transcription factors. However, little is known about the involvement of TLR4 and TLR2 on IF effects. The present work investigated the influence of TLR2 and TLR4 on IF effects on memory and on signaling mechanisms associated with the transcription factors NF-&#954;B, NRF2 and FOXO in TLR2 KO or TLR4 KO mice. The results suggest that TLR4 and TLR2 participate in the effects of IF on oxidative stress levels, peripheral biomarkers, and on NF-&#954;B, CREB, AP1 and NRF2, as well as proteins modulated by these transcription factors such as BDNF, HO1, antioxidant enzymes, chaperones and cytokines. These results allow a better understanding of physiological processes that aim at developing new pharmacological interventions to promote longevity, healthy aging, and the treatment of neurodegenerative disorders.

Page generated in 0.0266 seconds