• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 37
  • 37
  • 8
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Mafic, ultramafic and anorthositic rocks of the Tete complex, Mozambique : petrology, age and significance

Evans, Richard John 11 September 2012 (has links)
M.Sc. / The ca. 800 km2 Tete Complex of NW Mozambique is located at the eastern end of the 830 ±30 Ma Zambezi Belt, near the transition zone into the Neoproterozoic Mozambique Belt. The Complex is located just south of the Sanangoe Shear Zone where Mesozoic and Late Palaeozoic cover rocks obscure much of the region. Country rocks immediately in contact with the Tete Complex include amphibolitic gneiss, graphite-bearing marble, calcsilicate gneiss, muscovite and biotite schist and quartzite of the Chidue Group. The Tete Complex may have been intrusive into the Chidue Group, although there is evidence inferring tectonic emplacement. Those few contact exposures that exist are equivocal. Some of the rocks within the Tete Complex have been affected by metamorphism up to amphibolite grade, although large proportions of the rocks retain pristine magmatic mineralogy and texture. The Tete Complex contains mafic, ultramafic and anorthositic rocks, dolerite dykes and minor Fe-Ti oxide-rich rocks that occur as rubble. Pyroxenite occurs as thin (<1-2 m), cumulate layers within gabbroic rocks. Most exposed anorthositic rocks occur in the Nyangoma area in the eastern part of the Tete Complex. The anorthosites and leucotroctolites are massive, coarse grained (2-3 cm), and contain plagioclase (An47-An57) megacrysts up to 10 cm in length, interstitial olivine (Fo59-Fobs) and orthopyroxene (En59- En75, mean A1203 = 1.84 wt.%) rimmed by clinopyroxene (mean = Wo 46En38Fs i6), pyrite and Fe-Ti oxides. Secondary biotite, iddingsite, epidote and green spinet are present. The stable coexistence of olivine and plagioclase limits the depth of emplacement to <7-8 kbar, or <20- 25 km; a relatively shallow level of emplacement is favored by the generally fine grain size of the gabbroic and doleritic rocks. Compositions of coexisting plagioclase and mafic silicates (orthopyroxene and olivine) are similar to those of massif-type anorthosites. Previously unmapped meta-anorthosite occurs along the western and northern margin (within the Sanangoe Shear Zone) of the Tete Complex and has been metamorphosed to amphibolite grade. The rock contains plagioclase (An38-An39), with the more Ab-rich compositions related to the formation of garnet (mean = A1m67GrotsPYI6Sp2). Metamorphic orthopyroxene (Enso-En53), clinopyroxene (mean = Wo37En38Fs25), mizzonitic scapolite (Me63), amphibole, biotite and apatite are present. High Cl contents in amphibole, scapolite and biotite (e.g., up to 4.7 wt. % in amphibole), suggest that a Cl-rich metamorphic fluid infiltrated the western margin of the Tete Complex. Olivine melagabbro from the north-central part of the Tete Complex contains plagioclase (An70-An26), olivine (Fo82-Fos4) and clinopyroxene (mean = WanEn1Fs0.2, mean A1203 = 2.56 wt. %), with primitive compositions compared to those in Nyangoma anorthositic rocks and pyroxenites. Pyroxenites are modally dominated by clinopyroxene (mean = Wo46-48En36-39Fsi3-18) with accessory interstitial plagioclases (Ano-An45) and discrete and exsolved orthopyroxenes (En 56-En75). Clinopyroxenes with high A1203 contents up to 9 wt. % are similar to high-Al pyroxene megacrysts. One sample of pyroxenite contains orthopyroxene (En56-En60) and plagioclase (An40-An45) with more evolved compositions compared to those in Nyangoma anorthositic rocks and olivine melagabbro. Normal Fe4- and Na-enrichment trends accompanying fractionation from magmas that may be common to the Nyangoma anorthositic rocks, pyroxenites and olivine melagabbro, are associated with an increase in Al relative to Cr along a line of nearly constant relative Ti content. Gabbro contains olivine and plagioclase crystals that are commonly zoned, thus ranging widely in composition (Fool -Fos°, Anss-Ans2)• Clinopyroxene (mean = Wo36En47Fsi6) constitutes ca. 34 modal % of gabbro. New whole-rock (Nyangoma anorthosite and leucotroctolite) and mineral (plagioclase, clinopyroxene and orthopyroxene) Sm-Nd isotopic data yields ages between 975 ±33 Ma and 1041 ±131 Ma. The igneous crystallization age of the anorthositic rocks is estimated at 1025 ±79 Ma (9-point whole-rock regression). Rb-Sr isotopic compositions for whole-rock samples reveal no meaningful age relationships. Initial Nd isotopic compositions (calculated at 1.0 Ga) correspond to E Nd values between +3.5 and +4.5 (mean = +4.1) with Is, = 0.70276 — 0.70288 (mean = 0.70282), both inferring magmatic derivation from a depleted mantle source, possibly with little or no contamination by Archaean crustal components. TDM model ages range between 1074 and 1280 Ma (mean = 1148 Ma). There is a striking similarity between the Tete Complex anorthosites and those of SW Madagascar in terms of Nd isotopic compositions and the nature of country rocks; in both regions the anorthosites were emplaced either magmatically or tectonically into shelf-type supracrustal metasediments (marbles, quartzites, graphitic schists, etc.). Anorthosites intruded similar country rocks in Draining Maud Land, eastern Antarctica. Although anorthosites from Mozambique and Madagascar share a common depleted mantle signature with little or no contamination by Archaean crustal components, a direct stratigraphic correlation between these two areas (and possibly eastern Antarctica), awaits further geological and geochronological data.
32

The Merensky Reef at Dwarsriver 372 KT with reference to the mineral chemistry and the platinum group minerals in the Merensky reef chromitite stringers

Rose, Derek Hugh 06 June 2012 (has links)
M.Sc. / This study focuses on the Merensky Reef (MR) occurring within the Two Rivers Platinum mine property in the farm Dwarsriver 372 KT, on the Southern sector of the Eastern Limb of the Bushveld Complex. Five MR exploratory drill core intersections were obtained. Petrographic and mineral chemical characteristics of these drill core samples focused on the characterization of minerals like clinopyroxene, orthopyroxene, plagioclase, chromite and olivine. Data of the cryptic variation of orthopyroxene, plagioclase and chromite, from a 10 m interval (approximate thickness of the section studied); from footwall through the MR to the hangingwall lithologies at Dwarsriver are described in this study. Locally the vertical cryptic variation of these minerals is broadly consistent with regional trends of the RLS. The lateral variation (i.e. along strike) is less pronounced; however, locally these minerals appear to be chemically evolving moving to the south of the property. Footwall orthopyroxene compositions vary from a minimum of En66 and reach a maximum of En84. Those of the MR range from En71 to En85. Hangingwall orthopyroxene compositions range from En60 and reach a maximum of En80. Plagioclase compositions in the footwall units range from a minimum of An69 and reach a maximum of An85. Those of the MR range from a minimum of An35 to a maximum of An84. This wide range in plagioclase compositions is believed to be as a result of the increased presence of fluids within the MR interval. The hangingwall plagioclase compositions range from An64 to An84. By analogy of the Western Limb, where the lithologies of the Northwestern sector are believed to be proximal to the feeder of this limb; the local lateral variation in the present study suggests that the lithologies of either the Central or Western sectors are most probably proximal to the feeder for the Eastern Limb. PGM assemblages associated with and adjacent to the MR chromitite stringers were evaluated using an MLA. Data obtained from this technique is in broad agreement with regional studies of the MR. With the aid of wholerock PGE assays the MLA technique has proven to be a powerful tool in evaluating PGM assemblages relatively quickly, from a few carefully selected samples. The mineralogical associations of the PGM with the gangue and host minerals have shown three main associations. These are the associations of chromite, BMS and silicates with the PGM, of which the base metal sulfide (BMS) association is remarkable given that these have a relatively low modal abundance. The relatively high mineralogical association of the BMS with PGM has been explained by a model involving a base metal sulfide liquid which possibly scavenged chalcophile and siderophile elements. Chromite chemistry and modal analyses of MR secondary silicate phases, which peak adjacent to the chromitite stringers, suggests elevated fluid overprinting within and adjacent to the chromitite stringers. The upper chromitite stringers, however, have higher abundances of PGM phases that are believed to be secondary in origin relative to the basal chromitite stringers. Generally the PGM associated with the upper chromitite stringers are also bigger in size averaging 70 μm as opposed to 27 μm for those associated with the basal chromitite stringers. The increase in grain size of the PGM along with the higher modal abundance of secondary PGM phases associated with the upper stringers is believed to be as a result of fluids. These fluids although affecting both the upper and basal chromitite stringers, appear to have had a relatively higher influence on the upper chromitite stringers. The most common PGMs encountered in this study are isoferroplatinum, sperrylite, michenerite, maslovite, cooperite, laurite and braggite.
33

Paleoproterozoic Mississippi Valley-Type Pb-Zn deposits of the Ghaap Group, Transvaal Supergroup in Griqualand West, South Africa

Schaefer, Markus Olaf 28 January 2009 (has links)
D.Phil. / Please refer to full text to view abstract
34

An assessment of equilibrium in the Merensky Reef : a textural, geochemical and Nd isotope study of coexisting plagioclase and orthopyroxene from Winnaarshoek in the eastern Bushveld Complex, RSA

Raines, Mark Douglas January 2014 (has links)
Evidence of mineral disequilibrium is presented for the Merensky Reef at Winnaarshoek in the eastern Bushveld Complex. Petrographic disequilibrium textures, disequilibrium in orthopyroxene, plagioclase and clinopyroxene mineral compositions as well as disequilibrium in Sm-Nd isotopic compositions of whole rock samples and coexisting plagioclase and orthopyroxene are presented. Disequilibrium textures presented include clinopyroxene exsolution lamellae in orthopyroxene; resorbed plagioclase in orthopyroxene or relict plagioclase; various inclusions such as orthopyroxene, plagioclase or clinopyroxene in larger oikocrysts of clinopyroxene or orthopyroxene; discontinuous rims of clinopyroxene surrounding orthopyroxene; resorbed orthopyroxene in clinopyroxene; and corona textures associated with olivine. These textures were used to derive a possible mineral crystallization sequence. At least two sequences of crystallization took place, both of which crystallized plagioclase first. One sequence then crystallized olivine which was then consumed to produce orthopyroxene which crystallized prior to late clinopyroxene. The other sequence indicates orthopyroxene crystallization after plagioclase crystallization, followed by crystallization of clinopyroxene. These sequences indicate at least two magmas were responsible for the genesis of the Merensky Reef and its hanging wall and footwall units. Compositionally, disequilibrium is evident in the range of compositions found in coexisting orthopyroxene, plagioclase and clinopyroxene with stratigraphic height, with particular reference to the change in mineral composition in each of the hanging wall, Reef and footwall units. Orthopyroxene compositions range in Mg numbers between 74.6 and 82.9 (77.4) in the hanging wall, 78.5 and 87.0 (avg. 81.1) in the Reef, and 77.9 and 84.1 (avg. 81.3) in the footwall. Plagioclase compositions range in An content between An64.9 and An82.3 (avg. An75.1) in the hanging wall, An56.8 to An70.8 (avg. An62.7) in the Reef, and An54.2 to An86.3 (avg. An73.2) in the footwall. In terms of Sm-Nd isotopic compositions, disequilibrium is evident between both whole rock samples and coexisting plagioclase and orthopyroxenes. Bulk rock Sm-Nd isotopic compositions show a range in ԐNd values between ԐNd (2.06 Ga) = -4.8 to -6.4 in the hangingwall, ԐNd (2.06 Ga) = -6.3 to -8.5 in the Reef, and ԐNd (2.06 Ga) = -4.5 to -6.3 in the footwall. Similar ԐNd values are present in the hanging wall and footwall units, with a clear “spike” in the Merensky Reef. ԐNd values in plagioclase are between ԐNd (2.06 Ga) = -5.8 and -7.8, while orthopyroxene isotopic Sm-Nd values are between ԐNd (2.06 Ga = -7.1 and -9.1. The mineral disequilibrium features presented within this study help elucidate the crystallization sequence of the magma as well as to constrain the contamination of the magma upon ascension and emplacement of the Merensky Reef. The results of this study favour a model where a mantle plume resulted in the ascent of a new magma which was contaminated by the assimilation of old, lower crust. Contamination took place prior to the possible lateral emplacement of the Merensky reef as a density current. 5-10% contamination of depleted mantle or a B2-“like” source by Archaean TTGs is modeled to achieve the contamination “spike” of ԐNd = -8.5 in the Merensky Reef.
35

Genesis of karst-hosted manganese ores of the Postmasburg Manganese Field, South Africa with emphasis on evidence for hydrothermal processes / Genesis of karst-hosted manganese ores of the Postmasburg Manganese Field and the implications of related hydrothermal activity, Northern Cape, South Africa

Fairey, Brenton John January 2014 (has links)
The Postmasburg Manganese Field (PMF), located in the Northern Cape Province of South Africa, once represented one of the largest sources of manganese ore worldwide. However, the discovery of the giant manganese deposits of the Kalahari Manganese Field (KMF) led to the gradual decline in manganese mining activity in the PMF. Two belts of manganese ore deposits have been distinguished in the PMF, namely the Western Belt of ferruginous manganese ores and the Eastern Belt of siliceous manganese ores. Prevailing models of ore formation in these two belts invoke karstification of manganese-rich dolomites and residual accumulation of manganese wad which later underwent diagenetic and low-grade metamorphic processes. For the most part, the role of hydrothermal processes in ore formation and metasomatic alteration is not addressed. The identification of an abundance of common and some rare Al-, Na-, K- and Ba-bearing minerals, particularly aegirine, albite, microcline, banalsite, sérandite-pectolite, paragonite and natrolite in the PMF ores studied in this thesis, is indicative of the influence of hydrothermal activity. Enrichments in Na, K and/or Ba in the ores are generally on a percentage level for the majority of samples analysed through bulk-rock techniques. The discovery of a Ba-Mn arsenate/vanadate similar to gamagarite may also indicate that the hydrothermal fluid affecting the ores was not only alkali-rich but also probably contained some As and V. The fluid was likely to be oxidized and alkaline in nature and is thought to have been a mature basinal brine. Various replacement textures, particularly of Na- and Krich minerals by Ba-bearing phases, suggest sequential deposition of gangue as well as oreminerals from the hydrothermal fluid, with Ba phases being deposited at a later stage. The stratigraphic variability of the studied ores and the deviation of their character from the pigeon-hole-type classification of ferruginous and siliceous ores in the literature, suggests that a re-evaluation of genetic models is warranted. The discovery of hydrothermallydeposited alkali-rich assemblages in the PMF and KMF provides grounding for further investigation into a possible regional-scale hydrothermal event at least re-constituting the ores. Some shortcomings in previous works include disregard for the highly variable nature of the PMF deposits, the effects of hydrothermal activity of the ores and the existence of stratigraphic discrepancies. This study provides a single, broad model for the development of all manganese deposits of the PMF. The source of metals is attributed to all formations that stratigraphically overly the Reivilo Formation of the Campbellrand Subgroup (including the Reivilo Formation itself). The main process by which metals are accumulated is attributed to karstification of the dolomites. The interaction of oxidized, alkaline brines with the ores is considered and the overlying Asbestos Hills Subgroup BIF is suggested as a potential source of alkali metals.
36

Petrology and mineral chemistry of sulphide ores and associated metalliferous rocks of the Gamsberg Zn-Pb deposit, South Africa : implications for ore genesis and mineral exploration

Stalder, Marcel 12 1900 (has links)
Thesis (PhD)--University of Stellenbosch, 2004. / ENGLISH ABSTRACT: The Gamsberg Zn-Pb deposit is a metamorphosed and multiply deformed sediment-hosted base metal deposit in the central Namaqua Province of South Africa. The deposit is hosted by the Bushmanland Group, a late Palaeoproterozoic (2000-1600 Ma) supracrustal succession of quartzite, metapelitic schist and interbedded metavolcanic rocks. Mineralisation occurs within the central part of the Gams Formation, a heterogeneous sequence of metamorphosed metalliferous sediments and fine-grained organic-rich shales. The ore horizon is subdivided into a lower unit of metapelite-hosted ore, an intermediate layer of phosphorite-hosted ore, and an upper unit of banded garnet-apatite ore. The ore body is enveloped by unmineralised silicate-, carbonate- and oxide-facies metalliferous rocks, which originally represented mixtures of Fe-Mn-rich hydrothermal precipitates, authigenic carbonate, and variable concentrations of detrital material. Based on mineralogical and geochemical characteristics, the metalliferous host rocks are subdivided into iron formations, coticules, Fe-Mn silicates, impure marbles and barite/Ba-rich quartzite. Minerals of the Gams Formation mostly represent solid solution between the Fe and Mn end-members of garnet, pyroxene, pyroxenoid, amphibole, olivine, spinel and ilmenite. Calcium-rich rock types are a typical feature and characterized by the occurrence of manganoan calcite, clinopyroxene, andradite-rich garnet and titanite. A successive increase in the (Mn+Ca):Fe value of rocks and minerals is evident with increasing distance from the ore horizon. Amphibole is restricted to Fe-rich ore-bearing assemblages, whereas orthopyroxene, clinopyroxene, Fe-rich pyroxenoid and olivine are present in intermediate assemblages, and Mn-rich rhodonite and pyroxmangite in the most manganiferous assemblages. These variations are mimicked by an increase in the Mn:Fe value of coexisting garnet and ilmenite group minerals with increasing distance from ore. LA-ICP-MS analyses have been used to constrain the REE patterns of garnet and apatite. In the ore-body, these minerals display a positive Eu anomaly, which is interpreted to reflect a distinct hydrothermal signature. In contrast, garnet and apatite in unmineralised metalliferous rocks display nil or a negative Eu anomaly. Primary features of the Gams Formation, such as REE patterns, the banded nature of garnet-apatite ore, the presence of diagenetic apatite nodules, and the distribution of the redox-sensitive elements Ba and Mn have been used to constrain palaeo-environmental conditions. The results indicate that metapelitehosted ore has been deposited in a stratified ocean that was characterised by anoxic bottom waters and precipitation of Fe and Zn sulphides into organic matter-rich shales. These rocks were superceded by phosphorite-hosted ore, garnet-apatite ore and metalliferous host rocks that developed in a suboxic to oxic environment. The large size of the deposit, the internal lamination of the ores and the predominance of sphalerite and barite are consistent with a vent-distal setting and precipitation of the ore-forming constituents from dense and reduced hydrothermal fluids, which originated due to reactivation of dormant growth faults. Collectively, the geological evidence indicates that Gamsberg is bridging the gap betweenthe SEDEX and BHT classifications. The relationships demonstrate that differences between these two classes of sediment-hosted Zn-Pb deposits are predominantly related to environmental conditions within localised third order basins and not to fundamental differences in ore-forming processes. / AFRIKAANSE OPSOMMING: Die Gamsberg Zn-Pb afsetting is ‘n meerfasig vervormde en gemetamorfiseerde sedimentgesetelde onedel metaal afsetting in die sentrale Namakwa Provinsie van Suid Afrika. Die afsetting word geherberg deur die Boesmanland Groep, ‘n laat Paleoproterosoïse (2000 – 1600 Ma) bokors-opeenvolging van kwartsiet, metapelitiese skis en tussengelaagde metavulkaniese gesteente. Mineralisasie word gevind in the sentrale deel van die Gams Formasie. Die Gams Formasie is ‘n heterogene opeenvolging van gemetamorfiseerde metaalhoudende sediment en fynkorrelrige organiese skalie. Die erts horison word onderverdeel in ‘n onderste laag van metapeliet-gesetelde erts, n sentrale laag van fosforiet-gesetelde erts, en ‘n boonste laag van gebande granaat-apatiet erts. Die erts-liggaam word omhuls deur ongemineraliseerde silikaat-, karbonaat- en oksied-fasies metal-ryke rotse. Hierdie gesteentes word geinterpreteer as oorspronklike mengsels van Fe-Mn-ryke hidrotermale partikels, outigeniese karbonaat, en verskeie hoeveelhede detritale materiaal. Gebaseer op mineralogiese en geochemiese kenmerke word hierdie rotse onderverdeel in ysterformasies, „coticules“, Fe-Mn silikate, onsuiwer marmer en barite/Ba-ryke kwartsiet. Minerale van die Gams Formasie form meestal soliede oplossingsreekse tussen die Fe en Mn endlede van granaat, pirokseen, piroksenoid, amfibool, olivien, spinel en ilmeniet. Kalsium-ryke rots tipes is ‘n tipiese kenmerk van die Gams Formasie en word gekenmerk deur mangaan-ryke kalsiet, klinopirokseen, andradiet-ryke granaat en sfeen. Daar word ‘n stapsgewyse vergroting van die (Mn+Ca):Fe verhouding in gesteentes en minerale gevind met toeneemende afstand van die erts horison. Amfibool is beperk tot Fe-ryke ertsdraende gesteentes, ortopirokseen, klinopirokseen, Fe-ryke piroksenoid en olivien tot intermediêre gesteentes, en Mn-ryke rodoniet en piroksmangiet tot Mn-ryke gesteentes. Hierdie variasies gaan gepaard met vergroting van die Mn:Fe verhouding in granaat en ilmeniet-groep minerale met toeneemende afstand van die erts. LA-ICP-MS analises was gebruik om die skaars-aarde element patrone van granaat en apatiet te bepaal. In die erts-liggaam wys hierdie minerale ‘n positiewe Eu anomalie, wat geinterpreteerd word as ‘n hidrotermale kenmerk. In ongemineraliseerde gasheer gesteentes wys granaat en apatiet geen of ‘n negatiewe Eu anomalie. Primêre kenmerke van die Gams Formasie, soos skaars-aarde patrone, the gebande voorkoms van granaat-apatiet erts, die teenwoordigheid van diagenetiese apatiet knolle, en die verspreiding van die redox-sensitiewe elemente Ba en Mn, was gebruik om afleidings oor die paleo-omgewing te maak. Die resultate het gewys dat metapeliet-gesetelde erts afgeset was onder anoksiese bodem water deur presipitasie van Fe en Zn sulfiedes in organiese skalie. Hierdie erts gaan oor in fosforiet-gesetelde erts, granaat-apatiet erts en metaal-ryke gasheer gesteente wat in ‘n suboksiese tot oksiese omgewing ontstaan het. Die grootte van die afsetting, die interne gelaagdheid van die erts, asook die teenwoordigheid van sfaleriet en bariet dui op ‘n distale omgewing relatief tot die hidrotermale bron en presipitasie van die ertsuit digte en gereduseerde hidrotermale vloeistowwe, wat ontstaan het deur die heraktiveering van rustende groeiverskuiwings. Gesaamentlik bewys die geologiese kenmerke van Gamsberg dat gemetamorfiseerde SEDEX en Broken Hill-tipe mineralisasie binne die perke van ‘n enkele afsetting kan voorkom. Die geologiese verhoudings dui aan dat verskille tussen hierdie twee tipes van sedimentgesetelde afsettings meestal veroorsaak word deur omgewings-toestande binne in gelokaliseerde derde orde komme en nie deur fundamentele verskille in ertsvormende prosesse nie.
37

Evaluation of the geochemical and mineralogical transformation at an old copper mine tailings dump in Musina, Limpopo Province, South Africa

Thobakgale, Rendani 18 September 2017 (has links)
MENVSC / Department of Ecology and Resource Management / Historically, mining activities have generated vast quantities of abandoned tailings dumps in several regions of South Africa and throughout the world. The management and disposal of huge volumes of tailings dumps has constituted a major challenge to the environment. The current study aims to establish the physicochemical properties and mineralogical characterization of the old copper tailings dump in Musina, to reveal the mobility patterns and attenuation dynamics of potentially toxic or heavy metal species as a function of depth, with a view of assessing their potential environmental impact with respect to surface and ground water systems. This information is crucial in the beneficial utilization of copper tailings in the development of sustainable construction materials as part of reuse approach management system. About twelve tailings samples were collected into polyethylene plastic bags from three established tailings profiles drilled by a hand auger. The collected tailings samples were characterized using standard analytical procedures i.e., X-ray fluorescence (XRF), X-ray diffraction (XRD) and scanning electron microscopy/energy dispersive spectroscopy (SEM-EDS). The transfer of potentially toxic or heavy metal species from tailings to water was evaluated using the standardized batch leaching test (EN 12457) and speciation-equilibrium calculations on the aqueous extracts performed by MINTEQA2. The leachate concentration of cations in the collected tailings samples was determined by inductively coupled mass spectrometry (ICP-MS) and the leachate concentration of anions was determined by ion chromatography (IC). A modified sequential extraction scheme was applied on the selected tailings samples of the drilled tailings profiles to further understand the mode of occurrence, the geochemical partitioning and distribution, real mobility, and environmental bioavailability of potentially toxic or heavy metal species in the tailings and tailings-soil interface. The extracted fractions or phases from sequential scheme were as follows: (F1) water-soluble fraction, (F2) exchangeable fraction, (F3) carbonate fraction, (F4) iron and manganese hydroxide associated fraction, (F5) organic matter and secondary sulphide associated fraction, (F6) primary sulphide bound fraction, and (F7) residual or silicate fraction. The results obtained from the seven steps sequential extraction scheme were validated by the determination vi of percentage recoveries from pseudo-total digestion or total metal content of the original sample. The distribution of major elements and potentially toxic or heavy metal species in different leachate fractions obtained after each step of sequential extraction of the selected tailings samples was determined by inductively coupled plasma mass spectrometry (ICP-MS). The appraised data was used to reveal the impact of atmospheric oxygen and infiltrating rain-water on the chemistry of copper tailings dump by depth profiles. Macroscopic properties revealed that the abandoned Musina copper tailings are fine to medium coarse grained, and range in color from light/dark gray at the upper or shallow depth of the tailings, to dark reddish-brown at the deeper zone where the tailings are mixed with the underlying soil or soil-interface. The drilled respective tailings profiles were uniform and slightly varied in both mineralogical and bulk chemical compositions with tailings depth. Mineralogical analysis showed the following order of mineralogical composition within the respective tailings profiles: quartz> epidote> chlorite> muscovite> calcite> hematite. Chalcopyrite was the only sulphide mineral observed by optical microscopy, although not identified or quantified by XRD and SEM-EDS analysis. The observed discrete chalcopyrite grains were attributed to the primary mined ore (i.e., chalcopyrite, chalcocite and bornite) during past copper mining activities in Musina. The tailings profiles were characterized by a medium alkaline pH (7.97-8.37) that corresponds very well with the tailings leachates or pore-water pH (8.36-8.46). This pH was constant and slightly varied with tailings depth in the respective tailings profiles. The high abundance of alumino-silicate minerals and traces of carbonates as calcite coupled with low sulphide mineral content, suggested a high neutralization capacity of the tailings which was in common agreement with an alkaline nature of the copper tailings dump. The chemical composition of major elements within the respective tailings profiles followed the order: Si>Al>Fe>Ca>Mg>K>Na, and corresponds very well with the mineralogical composition of the tailings, whereby alumino-silicates were the most abundant minerals in the tailings samples. Nevertheless, the solid-phase concentration of metals decreases with increasing tailings depth as Cu>Sr>Zr>Ni>Zn and was incongruent with the mineralogical composition within the respective tailings profiles. The main secondary minerals were calcite and hematite, and their proportion increased with increasing tailings vii depth. In addition, hematite formed coatings on the rims and corners of chlorite as observed from optical microscopy, and retained relatively high amounts of potentially toxic or heavy metals (up to 862 ppm of Cu, up to 36 ppm of Ni, and up to 25 ppm of Zn) at the upper and shallow depth of the respective tailings profiles, where bulk density was high and low porosity. Based on batch leaching tests, the amounts of potentially toxic or heavy metal species released into solution were low (0.27-0.34 μg/L Pb, 0.54-0.72 μg/L Ni, 0.88-1.80 μg/L Zn, and 20.21-47.9 μg/L Cu) and decreases with increasing tailings depth, indicating that, presently, the tailings have a minor impact on heavy metals load transported to the receiving surface and groundwater systems. The low concentration of potentially toxic or heavy metal species in solution is primarily due to their retention by secondary Fe oxide phases (i.e., hematite) and the prevailing medium alkaline pH condition of the tailings leachate or pore-water. The observations are consistent with MINTEQA2 speciation calculations, which predicted the precipitation of secondary phase cuprite (Cu2O) as the main solubility-controlling mineral phase for Cu, Zn, and Ni. Primary factors influencing aqueous chemistry at the site are neutralization and dissolution reactions as a function of pH, precipitation, and sorption into hydrous oxides (hematite and cuprite). Based on sequential extraction results, the leachable concentration of potentially toxic or heavy metal species in the water-soluble, exchangeable and carbonate fractions of the respective tailings profiles was relatively low, except for Cu and Mn. For instance, the leachable concentration of Cu and Mn reached 10.84 mg/kg and 321.7 mg/kg at the tailings-soil interface (3 m) in tailings profile C, respectively. The low concentration of potentially toxic or heavy metal species (Cr, Co, Ni, Zn, Cd, and Pb) in these fractions could be due to the low solubility of minerals bearing these trace elements caused by variations in pore-water pH in the respective tailings profiles. The high concentration of Cu and Mn in these fractions suggests their high mobility and therefore most available for uptake in the environment. Except for Cu>Mn>Cr, the contents of potentially toxic or heavy metal species in the Fe and Mn oxides and organic matter or sulphides bound fractions was low, due to the low viii quantity of these fractions in the tailings, despite their high affinity and sorption capacity for potentially toxic or heavy metal species. Likewise, the residual fraction of the respective tailings profiles contained the highest proportion of potentially toxic or heavy metal species. Although the highest potentially toxic or heavy metal species content was in fractions with limited mobility, care must be taken since any geochemical change or shift in the tailings pH or acidic conditions may cause them to be displaced to more mobile fractions, thereby increasing their mobility and environmental bioavailability. Therefore, physicochemical properties of the tailings including pH and mineralogical composition of the tailings samples were the main substrate controlling the geochemical partitioning and distribution, potential mobility, and environmental bioavailability of potentially toxic or heavy metal species by tailings depth. The knowledge of mobility and eco-toxicological significance of tailings is needed when considering tailings dump disposal or reuse in the environment. The addition of copper tailings at 3 and 28 days successfully improved the compressive strength of cement mortar mixtures incorporating tailings at C5 (5%) and C10 (10%) respectively, although with small margin relative to the control mixture (C0). The maximum strength was 31.15 Mpa attained after 28 curing days, and slightly varied when compared with other compressive strength on copper blended cement mortars mixtures in other countries, used for the development of sustainable construction materials. The chemical composition, physical properties and improved compressive strength on cement mortars mixtures incorporating copper tailings, implies that copper tailings are suitable for the development of sustainable construction materials, thereby ensuring job creation, availability of land for development usage, and the reduction of environmental pollution induced by the abandoned copper tailings dumps.

Page generated in 0.2669 seconds