Spelling suggestions: "subject:"minicanaux"" "subject:"àminicanaux""
1 |
Optimisation d'un évaporateur à mini-canaux par la maitrise de la distribution en fluide frigorigèneLeblay, Patrick 20 November 2012 (has links) (PDF)
L'objet de cette étude est l'optimisation de la distribution d'un fluide diphasique dans un évaporateur compact à mini-canaux. Une méthode de mesure, basée sur la thermographie infrarouge, a été développée pour caractériser la distribution des échanges thermiques en paroi de l'échangeur, représentatifs de la distribution du fluide. Cette méthode a été validée sur une maquette d'évaporateur à mini-canaux avec un fluide monophasique, puis avec un mélange eau-air. L'influence des débits et des titres en gaz du fluide sur la distribution a été étudiée, ainsi que l'orientation de l'échangeur. Il a été mis en évidence que la distribution dans l'échangeur est fortement dépendante de l'inertie de la phase liquide du fluide. L'introduction d'un corps poreux dans le distributeur permet de limiter cet effet. Un outil de simulation numérique de la distribution du fluide diphasique (eau-air et fluide frigorigène) dans un évaporateur a été développé puis validé par des résultats expérimentaux.% Ces essais ont mis en évidence l'importance majeure de l'inertie de la phase liquide sur la distribution des échanges. Un corps poreux a donc été inséré dans le distributeur, de façon à briser l'élan de la phase liquide. Les résultats montrent l'effet bénéfique obtenu, pour une augmentation des pertes de charge négligeable. Enfin, un outil de simulation numérique a été développé puis validé. Cet outil a pour vocation de prédire la distribution des échanges thermiques et du fluide frigorigène au sein d'un évaporateur.
|
2 |
Passive cooling of data centers : modeling and experimentation / Refroidissement passif des datas centers : modélisation et expérimentationNadjahi, Chayan 17 December 2018 (has links)
L'objectif de cette étude est de concevoir un système de refroidissement passif au sein d'un data center. La solution qui a été choisie est la boucle thermosiphon, combinant le free cooling et le refroidissement par changement de phase. Cette technologie offre de la simplicité et de la compacité. De plus, en l'associant avec des échangeurs de chaleur à micro-canaux, elle est capable d'absorber de grandes quantités de flux de chaleur avec un faible débit du réfrigérant. La boucle thermosiphon est composée d'un évaporateur à mini-canaux et à courants parallèles, d'un condenseur à air, d'un riser et d'un downcomer. Un prototype expérimental a été construit afin de caractériser les transferts de chaleur entre le réfrigérant et la chaleur créée. Des études expérimentales sont introduites. L'influence du taux de chargement et de la puissance électrique est détaillée et analysée. En parallèle, un modèle numérique a été développé pour prédire les caractéristiques du réfrigérant en fonction des paramètres géométriques et climatiques. Une comparaison avec les résultats expérimentaux est également effectuée. Enfin, la boucle thermosiphon est améliorée avec l'ajout d'un second évaporateur. Les tests sont effectués avec des puissances plus importantes. Une nouvelle conception d'une boucle thermosiphon et les limites du prototype sont présentées. / The objective of this study is to build a passive cooling system in a data center. The chosen solution is the loop thermosyphon, combining free cooling and two-phase cooling. This technology offers simplicity and compactness. Furthermore, by associating with micro-channels heat exchangers, it is able to remove higher heat fluxes while working with smaller mass flow rate of coolant. The thermosyphon is composed by mini-channel parallel-flow evaporator, an air condenser, a riser and a downcomer. The experimental setup has been built to characterize the heat transfer between the working fluid and the provided heat. An experimental study is introduced. The effect of the fill ratio and the input power is specified and analyzed. In parallel, a numerical model has been developed to predict the fluid properties in function of geometrical and climatic parameters. A comparison between experimental and numerical results is also carried out. Finally, the loop thermosyphon is upgraded with a second mini-channel parallel flow evaporator. Tests are conducted with huger heat flux. A new design of loop thermosyphon and the limits of the prototype are introduced.
|
3 |
Modélisation et caractérisation expérimentale d’un évaporateur à mini-canaux de climatisation automobile fonctionnant au CO2 / Modeling and experimental characterization of a minichannels evaporator for a CO2 automotive air-conditioning systemAyad, Mohamed Fadil 12 November 2007 (has links)
Ce travail s’inscrit dans le cadre de l’utilisation du dioxyde de carbone comme réfrigérant dans les systèmes de climatisation automobile en remplacement du HFC-134a. L’objectif est d’assurer le bon dimensionnement de l’évaporateur. Cela nécessite une étude du comportement de la vaporisation du CO2 dans les mini-canaux et la caractérisation expérimentale de l’échange de chaleur et de masse côté air assuré par des ailettes à persiennes. La vaporisation du CO2 est dominée par un régime d’ébullition nucléée offrant des coefficients d’échange très élevés et par un assèchement (disparition du film liquide en contact de la paroi) précoce. À partir de données expérimentales issues de la littérature, une méthode prédictive du coefficient d’échange de chaleur en fonction du titre en vapeur a été développée. Cette méthode combine des modèles de transfert de chaleur d’ébullition nucléée, d’évaporation convective et de post-assèchement. Du côté air de l’évaporateur, un travail expérimental a été mené pour étudier l’impact de l’humidité absolue sur la performance thermohydraulique des ailettes à persiennes. Il ressort qu’à partir d’un nombre de Reynolds relativement faible et en mode de déshumidification, l’augmentation de l’humidité absolue de l’air dégrade le coefficient d’échange de chaleur sensible alors que l’efficacité d’ailette reste quasiment inchangée. Enfin, tous ces résultats nous ont permis de développer un modèle de simulation du fonctionnement des évaporateurs à mini-canaux basé sur une discrétisation fine de l’échangeur ; c’est un outil précieux pour le dimensionnement et l’optimisation de tels échangeurs de chaleur. / This work deals with the use of carbon dioxide as refrigerant for automotive air conditioning systems in replacement of HFC-134a. The objective is to provide the right design of evaporators. For that, it is necessary to study the vaporization of CO2 inside minichannels and to characterize the heat and mass transfer on the air-side. CO2 vaporization is characterized by a predominant nucleate boiling, leading to high heat transfer coefficients, and an early dryout (disappearance of liquid film in contact with the wall). From experimental data found in the literature, a predictive method of heat transfer coefficient according to the vapor quality has been developed. This method combines heat transfer models of nucleate boiling, convective evaporation and post-dryout. On the air-side of the evaporator, an experimental work has been performed to study the impact of absolute humidity on the thermal-hydraulic performance of louvered fins. We noted that from a relatively low value of Reynolds number, in dehumidifying conditions, the increase in absolute humidity degrades the sensible heat transfer coefficient, while the fin efficiency remains almost unchanged. Finally, all these results allowed us to develop a numerical model of minichannels evaporator based on a fine discretization of the heat exchanger; it is a valuable tool for the design and optimization of such heat exchangers.
|
4 |
SIMULATION NUMERIQUE DE LA CONVECTION TURBULENTE : GEOMETRIES REGULIERES ET COMPLEXES / NUMERICAL SIMULATION OF TURBULENT CONVECTION : REGULAR AND COMPLEX GEOMETRIESBessanane, Nabil 09 December 2018 (has links)
La convection turbulente dans des géométries régulières et complexes trouve son importance dans de nombreuses applications industrielles, notamment les échangeurs de chaleurs (dissipateurs à picots). L’objectif de ce travail est de faire une étude diagnostic sur la qualité d’échange thermique dans des géométries représentatives d’échangeurs de chaleur, en utilisant la simulation numérique comme outil d’investigation. L’approche qui sera utilisée est basée sur la résolution des équations de Navier-Stockes (moyennées) RANS avec les modèles statistiques.La finalité des résultats est de proposer des solutions pour promouvoir l’échange de chaleur dans ce type de configuration à petites échelles (micro systèmes de dissipateurs de chaleur à picots). Pouvoir déterminer une nouvelle approche pour le calcul du coefficient d’échange moyen par convection (coefficient d’échange convectif) dans des géométries complexes et compactes, et adopter une nouvelle approche pour calculer les températures de référence. Proposition et adaptation d’une nouvelle forme de géométrie pour une éventuelle optimisation du modèle existant (picots en forme losange). / The turbulent convection in regular and complex geometries is important in many industrial applications including mini/micro heat exchangers (pin-fins heat sinks). The objective of this work is to conduct a parametric study of the quality of heat exchange in representative forms of geometries of mini-channels, by using numerical simulation as an investigative tool. The approach taken is based on solving Averaged Navier-Stokes equations, RANS approach with the statistical models.The purpose of the results is to propose solutions to promote the exchange of heat in this type of configuration (micro systems of pin-fins heat sinks). Get a new approach for the calculation of averaged heat transfer coefficient in complex and compact geometries, and adopt a new approach to calculate reference temperatures. Suggestion and adaptation of a new form of geometry for an eventual optimization of the existing model (diamond shaped pin-fins).
|
5 |
Contributions expérimentales sur les écoulements diphasiques dans un évaporateur de climatisation : essais en eau-air et en réfrigérant R134a / Experimental contribution on two-phase flow in an air conditioning evaporator : investigations on air-water and R134aSalemi, Bamdad 18 December 2014 (has links)
La compréhension des écoulements multiphasiques dans les évaporateurs à mini-canaux est primordiale pour la performance des boucles de climatisation dans le secteur automobile notamment. Cette thèse s’est principalement intéressée à l’écoulement d’entrée de tels évaporateurs ainsi qu’à la répartition des phases dans les mini-canaux. Dans un premier temps, l’écoulement adiabatique diphasique en entrée d’évaporateur a été étudié. Un dispositif expérimental transparent, respectant au mieux la géométrie d’entrée de l’évaporateur, a été réalisé afin de reproduire l’écoulement diphasique d’entrée en eau-air mais en respectant les régimes d’écoulement rencontrés avec du R134a. Plusieurs techniques de caractérisation ont été mises en œuvre (visualisation, conductimétrie, tube de Pitot et prises de pression) afin de quantifier les pertes de pression, les épaisseurs de film et les vitesses du gaz dans un régime principalement annulaire. Suivant le même principe, un autre module en acier-inox a été développé pour caractériser l’écoulement directement en entrée d’évaporateur avec du réfrigérant R134a. Dans un second temps, nous avons étendu l’étude au cas d’un évaporateur compact à mini-canaux. Dans deux situations adiabatiques : monophasique (eau) et diphasique (eau-air), les pertes de pression, la répartition des phases le long de l’évaporateur et le régime d’écoulement dans les mini-canaux ont été étudiés sur un échangeur fabriqué en polycarbonate dont la géométrie s’approche au mieux de celle d’un échangeur réel. Les nombreux résultats ainsi obtenus constituent une base de données conséquente utile à la simulation numérique de ce type d'écoulements diphasiques / Understanding of multiphase flows in mini-channel evaporators is essential for the performance of air-conditioning systems, particularly in automotive sector. This thesis is mainly interested in behavior of inlet flow and phase distribution in the mini-channels. Initially, an adiabatic two-phase flow at the evaporator's inlet was studied. A transparent experimental apparatus with the same geometry as an evaporator's inlet has been designed. This test section helped us to reproduce the same flow regimes with air-water as flow regimes encountered with R134a in an evaporator. Several characterization techniques were used (visualization, conductance probes, Pitot tube and pressure taps) to determine pressure losses, liquid film thickness and gas velocity in a predominantly annular flow regime. Following the same principle, another experimental facility in stainless steel was developed to directly characterize the R134a flow at the evaporator's inlet. Finally, we have extended the study to the case of a compact evaporator in two adiabatic situations: single-phase (water) and two-phase (air-water). Pressure losses, phase distribution along the evaporator and flow regime in mini-channels were studied on an evaporator made of transparent materials (polycarbonate) with a close geometry to that of a real evaporator. Numerous results were obtained to provide a consistent database that would be useful for numerical simulation of this type of two-phase flows
|
6 |
Modélisation dynamique basée sur l'approche bond graph d'une boucle fluide diphasique à pompage mécanique avec validation expérimentale / Bond graph based modeling and experimental validation of a two-phase fluid loop mechanically pumpedKebdani, Mohamed 20 September 2016 (has links)
Cette thèse s’inscrit dans le cadre du projet FUI THERMOFLUIDE-RT impliquant des Grands Groupes (Zodiac DS, Safran Hispano, MBDA), des PME (Atmostat, ADR, ControlSys) et cinq laboratoires (CRIStAL, LML Arts et Métiers Paris Tech, LEGI Grenoble, LMT ENS Cachan, CEA-Liten Grenoble). Le but est d’étudier un nouveau système de refroidissement de l’électronique. La technologie retenue est celle d’une boucle fluide diphasique à pompage mécanique (BFDPM). La thèse traite la modélisation dynamique et la validation expérimentale des composants de la boucle. Ceci permet de prévoir l’efficacité du système à partir de ses paramètres d’entrée, d’analyser les problèmes de régimes transitoires, et de proposer un outil de dimensionnement. La méthodologie bond graph est retenue à cause du caractère multi-physique des composants. D’abord, la problématique de base et le contexte sont présentés. Ceci permet d’introduire la solution retenue, celle des BFDPM. Les objectifs de la thèse sont décrits. Ensuite, une description du banc expérimental développé au cours de cette thèse est proposée. Les trois chapitres suivant sont consacrés à l’étude théorique et expérimentale des équipements de la boucle. Chacun de ces chapitres commence par l’état de l’art sur les travaux de modélisation et les corrélations des coefficients d’échange et des pertes de charge. Une seconde partie décrit les phénomènes et les équations. Une troisième partie est réservée à la validation des modèles. Un dernier chapitre récapitule les travaux de couplage des modèles dynamiques validés séparément. En conclusion, un récapitulatif des contributions est effectué. Des perspectives à court et moyen terme sont proposées / This thesis is part of the collaborative project FUI THERMOFLUIDE-RT involving major groups (Zodiac DS, Safran Hispano, and MBDA), SMEs (Atmostat Alcen, ADR, AER, ControlSys) and five laboratories (CRIStAL Ecole Centrale de Lille, LML Arts et Métiers Paris Tech, LEGI Grenoble, LMT ENS Cachan, CEA-Liten Grenoble). The main purpose is to study a new electronic cooling system. The technology chosen consists of a two-phase fluid loop mechanically pumped (TPLMP). The thesis deals with the dynamic modeling and experimental validation of the cooling components. The developed dynamic model allows to predict the efficiency of the cooling loop, to conduct the study of transitional regimes, and provides an original tool dedicated to design the loop components. The bond graph methodology is adopted because of the multi physics character of the studied components. First, the basic issues and the industrial context are presented. This allows to introduce the chosen solution (TPLMP). The objectives of the thesis are described. Then, a description of the rig test is proposed. The following three chapters are devoted to a theoretical and experimental study of the loop equipment. Each chapter begins with a state of the art on modeling and correlations of the heat exchange coefficients and losses. A second part of the chapter describes phenomena and equations. A third part is dedicated to the experimental validation. A final chapter presents the coupling works of dynamic models validated separately. Finally, a summary of all contributions is made. Prospects for future developments in short and medium term are proposed.
|
Page generated in 0.0418 seconds