• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rigidity and unstability of hypersurfaces and an unicity theorem on semi-Rieamannian manifolds. / Instabilidade e rigidez de hipersuperfÃcies e um teorema de unicidade em variedades semi-riemannianas

Kelton Silva Bezerra 06 December 2013 (has links)
CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior / Our aim in this work is threefold. First, we get an extension, to the spherical case, of a theorem due to J. Simons, which concerns unstability of minimal cones constructed over a certain class of minimal submanifolds of the Euclidean sphere. Second, we classify the quasi-Einstein structures of the Riemannian product Hn x R. Third, we get a rigidity theorem for complete hypersurfaces into the De Sitter space, under certain conditions on the mean and scalar curvatures. / Este trabalho aborda trÃs problemas em Geometria Diferencial. Primeiro, obtemos uma extensÃo, para o caso esfÃrico, de um teorema devido a J. Simons sobre instabilidade de cones mÃnimos construÃdos sobre uma certa classe de subvariedades mÃnimas da esfera Euclidiana. Depois, classificamos as estruturas quasi-Einstein existentes sobre o produto Riemanniano Hn X R. Por fim, obtemos um teorema de rigidez para hipersuperfÃcies tipo-espaÃo completas do espaÃo de De Sitter, sob certas condiÃÃes sobre as curvaturas mÃdia e escalar, alÃm de uma condiÃÃo de integrabilidade.
2

Résultats de régularité et d'existence pour des ensembles minimaux ; Problème de Plateau / Existence and regularity results for minimal sets ; Plateau problem

Cavallotto, Edoardo 25 June 2018 (has links)
Résoudre le Problème de Plateau signifie trouver la surface ayant l’aire minimale parmi toutes les surfaces avec un bord donné.Une partie du problème réside dans le fait de donner des définitions appropriées aux concepts de “surface”, “aire” et “bord”. Dans notre contexte les objets considérés sont ensembles dont la mesure de Hausdorff est localement finie. La condition de bord glissant est donnée par rapport à une famille à un paramètre de déformations compactes laquelle permet au bord de glisser le long d'un ensemble fermé. La fonctionnelle à minimiser est liée aux problèmes de capillarité et de frontière libre.On s'est intéressé aux cônes minimaux glissants, c'est à dire les cônes tangents aux surfaces minimaux glissantes dans des points sur son bord. En particulier on a étudié les cônes contenus dans un demi-espace dont le bord peut glisser le long l'hyperplane bornant le demi-espace. Après avoir donné une classification des cônes minimaux de dimension un dans le demi-plan on a présenté quatre nouveau cône minimaux de dimension deux dans le demi-espace (lesquels ne peuvent pas être obtenus comme un produit cartésien d'un des cône précédents avec la droite réelle). La technique utilisé c'est les calibrations couplées, qui dans un cas on a pu généraliser en grands dimensions.Afin de montrer que la liste des cônes minimaux est complète on a entamé la classification des cônes qui satisfont les conditions nécessaires pour la minimalité, pour lesquels on a obtenu des meilleurs compétiteurs à l'aide des simulations numériques. / Solving the Plateau problem means to find the surface with minimal area among all surfaces with a given boundary. Part of the problem actually consists of giving a suitable definition to the notions of “surface”, “area” and “boundary”. In our setting the considered objects are sets whose Hausdorff area is locally finite. The sliding boundary condition is given in term of a one parameter family of compact deformations which allows the boundary of the surface to moove along a closed set. The area functional is related to capillarity and free-boundary problems, and is a slight modification of the Hausdorff area.We focused on minimal boundary cones ; that is to say tangent cones on boundary points of sliding minimal surfaces. In particular we studied cones contained in an half-space and whose boundary can slide along the bounding hyperplane. After giving a classification of one-dimensional minimal cones in the half-plane we provided four new two-dimensional minimal cones in the three-dimensional half space (which cannot be obtained as the Cartesian product of the real line with one of the previous cones). We employed the technique of paired calibrations and in one case could also generalise it to higher dimension.In order to prove that the provided list of minimal cones is complete, we started the classification of cones satisfying the necessary conditions for the minimality, and with numeric simulations we obtained better competitors for these new candidates.
3

Régularité des cônes et d’ensembles minimaux de dimension 3 dans R4 / Regularity of three-dimensional minimal cones and sets in R4

Luu, Tien Duc 12 December 2011 (has links)
On étudie dans cette thèse la régularité des cônes et d'ensembles de dimension 3 dans l'espace Euclidien de dimension 4.Dans la première partie, on étudie d'abord la régularité Bi-Hölderienne des cônes minimaux de dimension 3 dans l'espace Euclidien de dimension 4. Ceci nous permet ensuite de montrer qu'il existe un difféomorphisme locale entre un cône minimal de dimension 3 dans l'espace Euclidien de dimension 4 et un cône minimal de dimension 3, de type P, Y ou T, loin d'origine. La méthode est la même que pour les ensembles minimaux de dimension 2. On construit des compétiteurs et on se ramène aux situations connues des ensembles minimaux de dimension 2 dans l'espace Euclidien de dimension 3.Dans la deuxième partie, on utilise le résultat de la première partie pour donner quelques résultats de régularité Bi-Hölderienne pour les ensembles minimaux de dimension 3 dans l'espace Euclidien de dimension 4. On s'intéresse aussi aux ensembles minimaux de Mumford-Shah et on obtient un résultat de l'existence d'un point de type T. / In this thesis we study the problems of regularity of three-dimensional minimal cones and sets in l'espace Euclidien de dimension 4In the first part we study the Hölder regularity for minimal cones of dimension 3 in l'espace Euclidien de dimension 4. Then we use this for showing that there exists a local diffeomorphic mapping between a minimal cone of dimension 3 and a minimal cone of dimension 3 of type P, Y or T, away from the origin. The techniques used here are the same as the ones for the regularity of two-dimensional minimal sets. We construct some competitors to reduce to the known situation of two-dimensional minimal sets in l'espace Euclidien de dimension 3.In the second part, we use the first part to give somme results of the Hölder regularity for three-dimensional minimal sets in l'espace Euclidien de dimension 4. We interested also in Mumford-Shah minimal sets and we get a result of the existence of a T-point.
4

Minimal sets, existence and regularity / Ensembles minimaux, existence et régularité

Fang, Yangqin 21 September 2015 (has links)
Cette thèse s’intéresse principalement à l’existence et à la régularité desensembles minimaux. On commence par montrer, dans le chapitre 3, que le problème de Plateau étudié par Reifenberg admet au moins une solution. C’est-à-dire que, si l’onse donne un ensemble compact B⊂R^n et un sous-groupe L du groupe d’homologie de Čech H_(d-1) (B;G) de dimension (d-1) sur un groupe abelien G, on montre qu’il existe un ensemble compact E⊃B tel que L est contenu dans le noyau de l’homomorphisme H_(d-1) (B;G)→H_(d-1) (E;G) induit par l’application d’inclusion B→E, et pour lequel la mesure de Hausdorff H^d (E∖B) est minimale (sous ces contraintes). Ensuite, on montre au chapitre 4, que pour tout ensemble presque minimal glissant E de dimension 2, dans un domaine régulier Σ ressemblant localement à un demi espace, associé à la frontière glissante ∂Σ, et tel que E⊃∂Σ, il se trouve qu’à la frontière E est localement équivalent, par un homéomorphisme biHöldérien qui préserve la frontière, à un cône minimal glissant contenu dans un demi plan Ω, avec frontière glissante ∂Ω. De plus les seuls cônes minimaux possibles dans ce cas sont ∂Ω seul, ou son union avec un cône de type P_+ ou Y_+. / This thesis focuses on the existence and regularity of minimal sets. First we show, in Chapter 3, that there exists (at least) a minimizerfor Reifenberg Plateau problems. That is, Given a compact set B⊂R^n, and a subgroup L of the Čech homology group H_(d-1) (B;G) of dimension (d-1)over an abelian group G, we will show that there exists a compact set E⊃B such that L is contained in the kernel of the homomorphism H_(d-1) (B;G)→H_(d-1) (E;G) induced by the natural inclusion map B→E, and such that the Hausdorff measure H^d (E∖B) is minimal under these constraints. Next we will show, in Chapter 4, that if E is a sliding almost minimal set of dimension 2, in a smooth domain Σ that looks locally like a half space, and with sliding boundary , and if in addition E⊃∂Σ, then, near every point of the boundary ∂Σ, E is locally biHölder equivalent to a sliding minimal cone (in a half space Ω, and with sliding boundary ∂Ω). In addition the only possible sliding minimal cones in this case are ∂Ω or the union of ∂Ω with a cone of type P_+ or Y_+.

Page generated in 0.0632 seconds