• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Algorithms for Collision Hulls and their Applications to Path Planning

Zane Smith Unknown Date (has links)
The potential benefits that automation could bring to a wide variety of real-world tasks are numerous and well recognised. There has been significant research undertaken into automation in general, but for real-time automation of complex systems (involving complex geometries and dynamics) the problem is far from a solved one. One of the key tasks in a surface mining operation is that of using shovels or excavators to load material onto haul trucks for transportation. Since it is such a crucial task to a number of production cycles, it is a clear area where the productivity and safety benefits of automation could have a large impact. A number of projects are being undertaken concurrently to move towards first partial, and then full, automation of this mining subsystem. This thesis focusses on the collision avoidance problem, specifically on forming a collision hull that distinguishes between intersecting and non-intersecting configurations of two objects. Techniques from computer graphics are leveraged to develop a data structure that stores and organises relevant information about real-world systems for motion-planning tasks, ensuring that the necessary data is available and in a form suited to the task at hand. The Minkowski Sum operation, which can be used fairly directly to form the collision hull of two convex objects under translation, is extended to develop an operation to form the exact collision hull of two arbitrary objects to determine the applicability of such a scheme to complex systems in real-time. A level of detail solution is then proposed, where the Minkowski Hull of bounding hierarchies allows unnecessary parts of the hull to be calculated only in a coarse manner, thus offsetting a lot of the computational cost for any given test. This approach is investigated for both translational motion and joint-space motion. Collision detection is not collision avoidance, and so the algorithms developed in the thesis are tested in a number of applications, to demonstrate their suitability to the collision avoidance task. The applications (discrete collision prediction, visibility graph path planning, and the formulation of a Model Predictive Controller) are restricted versions of the true problems with some simplifying assumptions, but they show the algorithms to be capable both in their execution speed and the information that they provide.
2

Stratégies de mise en oeuvre des polytopes en analyse de tolérance / STRATEGIES OF POLYTOPES IMPLEMENTATION IN TOLERANCE ANALYSIS

Homri, Lazhar 13 November 2014 (has links)
En analyse de tolérances géométriques, une approche consiste à manipuler des polyèdres de R' issus d’ensembles de contraintes linéaires. La position relative entre deux surfaces quelconques d'un mécanisme est déterminée par des opérations (somme de Minkowski et intersection) sur ces polyèdres. Ces polyèdres ne sont pas bornés selon les déplacements illimités dus aux degrés d’invariance des surfaces et aux degrés de liberté des liaisons.Dans une première partie sont introduits des demi-espaces "bouchons" destinés à limiter ces déplacements afin de transformer les polyèdres en polytopes. Cette méthode implique de maîtriser l’influence des demi-espaces bouchons sur la topologie des polytopes résultants. Ceci est primordial pour garantir la traçabilité de ces demi-espaces dans le processus d’analyse de tolérances.Une seconde partie dresse un inventaire des problématiques de mise en oeuvre numérique des polytopes. L’une d’entre elles repose sur le choix d’une configuration de calcul (point et base d’expression, coefficients d’homogénéisation) pour définir un polytope. Après avoir montré que le changement de configuration de calcul est une transformation affine, plusieurs stratégies de simulations sont déclinées afin d’appréhender les problèmes de précision numérique et de temps de calculs. / In geometric tolerancing analysis area, a classical approach consists in handling polyhedrons coming from sets of linear constraints. The relative position between any two surfaces of a mechanism is determined by operations (Minkowski sum and intersection) on these polyhedrons. The polyhedrons are generally unbounded due to the inclusion of degrees of invariance for surfaces and degrees of freedom for joints defining theoretically unlimited displacements.In a first part are introduced the cap half-spaces to limit these displacements in order to transform the polyhedron into polytopes. This method requires controlling the influence of these additional half-spaces on the topology of calculated polytopes. This is necessary to ensure the traceability of these half-spaces through the tolerancing analysis process.A second part provides an inventory of the issues related to the numerical implementation of polytopes. One of them depends on the choice of a computation configuration (expression point and base, homogenization coefficients) to define a polytope. After proving that the modification of a computation configuration is an affine transformation, several simulation strategies are listed in order to understand the problems of numerical precision and computation time.
3

Polyhedral models reduction in geometric tolerance analysis / Réduction de modèles polyédriques pour l’analyse de tolérances géométriques

Arroyave-Tobón, Santiago 10 November 2017 (has links)
L’analyse de tolérances par des ensembles de contraintes repose sur la détermination de l’accumulation de variations géométriques par des sommes et intersections d’ensembles opérandes 6d. Les degrés de liberté des liaisons et les degrés d’invariance des surfaces génèrent des opérandes non-bornés (polyèdres), posant des problèmes de simulation. En 2014, L. Homria proposé une méthode pour résoudre ce problème, consistant à ajouter des limites artificielles(contraintes bouchon) sur les déplacements non-bornés. Même si cette méthode permet la manipulation d’objets bornés (polytopes), les contraintes bouchon augmentent la complexité des simulations. En réponse à cette difficulté, une méthode dérivée est proposée dans cette thèse.Cette méthode consiste à tracer et simplifier les contraintes bouchon au travers des opérations.Puis une seconde stratégie basée sur la décomposition d’un polyèdre en une somme d’un polytope et de lignes droites (associées aux déplacements non-bornés). Cette stratégie consiste à simuler d’une part les sommes de droites, et d’autre part, à déterminer la somme de polytopes dans un sous-espace de dimension inférieur à 6. Ces trois stratégies sont comparées au travers d’une application industrielle. Cela montre que la traçabilité des contraintes bouchons est un aspect fondamental pour contrôler leur propagation et pour réduire le temps de calcul des simulations. Toutefois, cette méthode exige encore de déterminer les limites des déplacements non-bornés. La deuxième méthode, adaptant systématiquement la dimension de l’espace de calcul, elle permet de diminuer davantage le temps de calcul. Ce travail permet d’envisager la mise en oeuvre de cette méthode selon des formulations statistiques avec la prise en compte des défauts de forme des surfaces. / The cumulative stack-up of geometric variations in mechanical systems can be modelled summing and intersecting sets of constraints. These constraints derive from tolerance zones or from contact restrictions between parts. The degrees of freedom (DOF) of jointsgenerate unbounded sets (i.e. polyhedra) which are difficult to deal with. L. Homri presented in 2014 a solution based on the setting of fictitious limits (called cap constraints) to each DOFto obtain bounded 6D sets (i.e. polytopes). These additional constraints, however, increase the complexity of the models, and therefore, of the computations. In response to this situation,we defined a derived strategy to control the effects of the propagation of the fictitious limits by tracing and simplifying the generated, new cap constraints. We proposed a second strategy based on the decomposition of polyhedra into the sum of a polytope and a set of straight lines.The strategy consists in isolating the straight lines (associated to the DOF) and summing the polytopes in the smallest sub-space. After solving an industrial case, we concluded that tracing caps constraints during the operations allows reducing the models complexity and,consequently, the computational time; however, it still involves working in 6d even in caseswhere this is not necessary. In contrast, the strategy based on the operands decompositionis more efficient due to the dimension reduction. This study allowed us to conclude that the management of mechanisms’ mobility is a crucial aspect in tolerance simulations. The gain on efficiency resulting from the developed strategies opens up the possibility for doing statistical treatment of tolerances and tolerance synthesis.
4

On Product and Sum Decompositions of Sets: The Factorization Theory of Power Monoids

Antoniou, Austin A. 10 September 2020 (has links)
No description available.
5

Packing curved objects with interval methods / Méthodes intervalles pour le placement d’objets courbes

Salas Donoso, Ignacio Antonio 29 April 2016 (has links)
Un problème courant en logistique, gestion d’entrepôt, industrie manufacturière ou gestion d’énergie dans les centres de données est de placer des objets dans un espace limité, ou conteneur. Ce problème est appelé problème de placement. De nombreux travaux dans la littérature gèrent le problème de placement en considérant des objets de formes particulières ou en effectuant des approximations polygonales. L’objectif de cette thèse est d’autoriser toute forme qui admet une définition mathématique (que ce soit avec des inégalités algébriques ou des fonctions paramétrées). Les objets peuvent notamment être courbes et non-convexes. C’est ce que nous appelons le problème de placement générique. Nous proposons un cadre de résolution pour résoudre ce problème de placement générique, basé sur les techniques d’intervalles. Ce cadre possède trois ingrédients essentiels : un algorithme évolutionnaire plaçant les objets, une fonction de chevauchement minimisée par cet algorithme évolutionnaire (coût de violation), et une région de chevauchement qui représente un ensemble pré-calculé des configurations relatives d’un objet (par rapport à un autre) qui créent un chevauchement. Cette région de chevauchement est calculée de façon numérique et distinctement pour chaque paire d’objets. L’algorithme sous-jacent dépend également du fait qu’un objet soit représenté par des inégalités ou des fonctions paramétrées. Des expérimentations préliminaires permettent de valider l’approche et d’en montrer le potentiel. / A common problem in logistic, warehousing, industrial manufacture, newspaper paging or energy management in data centers is to allocate items in a given enclosing space or container. This is called a packing problem. Many works in the literature handle the packing problem by considering specific shapes or using polygonal approximations. The goal of this thesis is to allow arbitrary shapes, as long as they can be described mathematically (by an algebraic equation or a parametric function). In particular, the shapes can be curved and non-convex. This is what we call the generic packing problem. We propose a framework for solving this generic packing problem, based on interval techniques. The main ingredients of this framework are: An evolutionary algorithm to place the objects, an over lapping function to be minimized by the evolutionary algorithm (violation cost), and an overlapping region that represents a pre-calculated set of all the relative configurations of one object (with respect to the other one) that creates an overlapping. This overlapping region is calculated numerically and distinctly for each pair of objects. The underlying algorithm also depends whether objects are described by inequalities or parametric curves. Preliminary experiments validate the approach and show the potential of this framework.

Page generated in 0.0608 seconds