Spelling suggestions: "subject:"arithmétique d’intervalles"" "subject:"arithmétique d’intervalless""
1 |
Packing curved objects with interval methods / Méthodes intervalles pour le placement d’objets courbesSalas Donoso, Ignacio Antonio 29 April 2016 (has links)
Un problème courant en logistique, gestion d’entrepôt, industrie manufacturière ou gestion d’énergie dans les centres de données est de placer des objets dans un espace limité, ou conteneur. Ce problème est appelé problème de placement. De nombreux travaux dans la littérature gèrent le problème de placement en considérant des objets de formes particulières ou en effectuant des approximations polygonales. L’objectif de cette thèse est d’autoriser toute forme qui admet une définition mathématique (que ce soit avec des inégalités algébriques ou des fonctions paramétrées). Les objets peuvent notamment être courbes et non-convexes. C’est ce que nous appelons le problème de placement générique. Nous proposons un cadre de résolution pour résoudre ce problème de placement générique, basé sur les techniques d’intervalles. Ce cadre possède trois ingrédients essentiels : un algorithme évolutionnaire plaçant les objets, une fonction de chevauchement minimisée par cet algorithme évolutionnaire (coût de violation), et une région de chevauchement qui représente un ensemble pré-calculé des configurations relatives d’un objet (par rapport à un autre) qui créent un chevauchement. Cette région de chevauchement est calculée de façon numérique et distinctement pour chaque paire d’objets. L’algorithme sous-jacent dépend également du fait qu’un objet soit représenté par des inégalités ou des fonctions paramétrées. Des expérimentations préliminaires permettent de valider l’approche et d’en montrer le potentiel. / A common problem in logistic, warehousing, industrial manufacture, newspaper paging or energy management in data centers is to allocate items in a given enclosing space or container. This is called a packing problem. Many works in the literature handle the packing problem by considering specific shapes or using polygonal approximations. The goal of this thesis is to allow arbitrary shapes, as long as they can be described mathematically (by an algebraic equation or a parametric function). In particular, the shapes can be curved and non-convex. This is what we call the generic packing problem. We propose a framework for solving this generic packing problem, based on interval techniques. The main ingredients of this framework are: An evolutionary algorithm to place the objects, an over lapping function to be minimized by the evolutionary algorithm (violation cost), and an overlapping region that represents a pre-calculated set of all the relative configurations of one object (with respect to the other one) that creates an overlapping. This overlapping region is calculated numerically and distinctly for each pair of objects. The underlying algorithm also depends whether objects are described by inequalities or parametric curves. Preliminary experiments validate the approach and show the potential of this framework.
|
2 |
Numerical Quality and High Performance In Interval Linear Algebra on Multi-Core Processors / Algèbre linéaire d'intervalles - Qualité Numérique et Hautes Performances sur Processeurs Multi-CœursTheveny, Philippe 31 October 2014 (has links)
L'objet est de comparer des algorithmes de multiplication de matrices à coefficients intervalles et leurs implémentations.Le premier axe est la mesure de la précision numérique. Les précédentes analyses d'erreur se limitent à établir une borne sur la surestimation du rayon du résultat en négligeant les erreurs dues au calcul en virgule flottante. Après examen des différentes possibilités pour quantifier l'erreur d'approximation entre deux intervalles, l'erreur d'arrondi est intégrée dans l'erreur globale. À partir de jeux de données aléatoires, la dispersion expérimentale de l'erreur globale permet d'éclairer l'importance des différentes erreurs (de méthode et d'arrondi) en fonction de plusieurs facteurs : valeur et homogénéité des précisions relatives des entrées, dimensions des matrices, précision de travail. Cette démarche conduit à un nouvel algorithme moins coûteux et tout aussi précis dans certains cas déterminés.Le deuxième axe est d'exploiter le parallélisme des opérations. Les implémentations précédentes se ramènent à des produits de matrices de nombres flottants. Pour contourner les limitations d'une telle approche sur la validité du résultat et sur la capacité à monter en charge, je propose une implémentation par blocs réalisée avec des threads OpenMP qui exécutent des noyaux de calcul utilisant les instructions vectorielles. L'analyse des temps d'exécution sur une machine de 4 octo-coeurs montre que les coûts de calcul sont du même ordre de grandeur sur des matrices intervalles et numériques de même dimension et que l'implémentation par bloc passe mieux à l'échelle que l'implémentation avec plusieurs appels aux routines BLAS. / This work aims at determining suitable scopes for several algorithms of interval matrices multiplication.First, we quantify the numerical quality. Former error analyses of interval matrix products establish bounds on the radius overestimation by neglecting the roundoff error. We discuss here several possible measures for interval approximations. We then bound the roundoff error and compare experimentally this bound with the global error distribution on several random data sets. This approach enlightens the relative importance of the roundoff and arithmetic errors depending on the value and homogeneity of relative accuracies of inputs, on the matrix dimension, and on the working precision. This also leads to a new algorithm that is cheaper yet as accurate as previous ones under well-identified conditions.Second, we exploit the parallelism of linear algebra. Previous implementations use calls to BLAS routines on numerical matrices. We show that this may lead to wrong interval results and also restrict the scalability of the performance when the core count increases. To overcome these problems, we implement a blocking version with OpenMP threads executing block kernels with vector instructions. The timings on a 4-octo-core machine show that this implementation is more scalable than the BLAS one and that the cost of numerical and interval matrix products are comparable.
|
Page generated in 0.0863 seconds