Spelling suggestions: "subject:"implémentation parallèle"" "subject:"implémentations parallèle""
1 |
Résolution du problème du p-médian, application à la restructuration de bases de données semi-structuréesGay, Jean-Christophe 19 October 2011 (has links) (PDF)
Les problèmes que nous considérons dans cette thèse sont de nature combinatoire. Notre principal intérêt est le problème de restructuration de données semi-structurées. Par exemple des données stockées sous la forme d'un fichier XML sont des données semi-structurées. Ce problème peut être ramené à une instance du problème du p-médian. Le principal obstacle ici est la taille des instances qui peut devenir très grande. Certaines instances peuvent avoir jusqu'à 10000 ou 20000 sommets, ce qui implique plusieurs centaines de millions de variables. Pour ces instances, résoudre ne serait-ce que la relaxation linéaire du problème est très difficile. Lors d'expériences préliminaires nous nous sommes rendu compte que CPLEX peut résoudre des instances avec 1000 sommets dans des temps raisonnables. Mais pour des instances de 5000 sommets, il peut prendre jusqu'à 14 jours pour résoudre uniquement la relaxation linéaire. Pour ces raisons nous ne pouvons utiliser de méthodes qui considère la résolution de la relaxation linéaire comme une opération de base, comme par exemple les méthodes de coupes et de branchements. Au lieu d'utiliser CPLEX nous utilisons une implémentation parallèle (utilisant 32 processeurs) de l'algorithme du Volume. L'instance pour laquelle CPLEX demande 14 heures est résolue en 24 minutes par l'implémentation séquentielle et en 10 minutes par l'implémentation parallèle de l'algorithme du Volume. La solution de la relaxation linéaire est utilisée pour construire une solution réalisable, grâce à l'application d'une heuristique de construction gloutonne puis d'une recherche locale. Nous obtenons des résultats comparables aux résultats obtenus par les meilleures heuristiques connues à ce jour, qui utilisent beaucoup plus de mémoire et réalisent beaucoup plus d'opérations. La mémoire est importante dans notre cas, puisque nous travaillons sur des données de très grandes tailles. Nous étudions le dominant du polytope associé au problème du p-médian. Nous discutons de sa relaxation linéaire ainsi que de sa caractérisation polyédrale. Enfin, nous considérons une version plus réaliste du problème de restructuration de données semi-structurées. Grosso modo, nous ajoutons au problème du p-médian original des nouveaux sommets s'ils aident à réduire le coût global des affectations.
|
2 |
Etude et simulation numérique de la rupture dynamique des séismes par des méthodes d'éléments finis discontinusBenjemaa, Mondher 09 November 2007 (has links) (PDF)
Ce travail est dédié à l´étude et la simulation numérique de la rupture dynamique des séismes en deux et trois dimensions d´espace par une méthode d´éléments finis discontinus. Après avoir transformé le système de l´élastodynamique en un système hyperbolique symétrique du premier ordre, nous proposons un schéma numérique basé sur des flux centrés et un schéma explicite en temps de type saute-mouton. A travers l´étude d´une énergie discrète du système, nous spécifions les conditions aux limites sur la faille afin de prendre en compte de manière faible la rupture en mode cisaillant que nous traitons. Nous montrons, qu´en l´absence de tractions tangentielles sur la faille, cette énergie est parfaitement conservée. Nous illustrons la capacité de notre méthode à travers divers cas tests sur des configurations complexes grâce à une implémentation parallèle.
|
3 |
Résolution du problème du p-médian, application à la restructuration de bases de données semi-structurées / Resolution of the p-median problem : application to restructuring semi-structured dataGay, Jean-Christophe 19 October 2011 (has links)
Les problèmes que nous considérons dans cette thèse sont de nature combinatoire. Notre principal intérêt est le problème de restructuration de données semi-structurées. Par exemple des données stockées sous la forme d’un fichier XML sont des données semi-structurées. Ce problème peut être ramené à une instance du problème du p-médian. Le principal obstacle ici est la taille des instances qui peut devenir très grande. Certaines instances peuvent avoir jusqu’à 10000 ou 20000 sommets, ce qui implique plusieurs centaines de millions de variables. Pour ces instances, résoudre ne serait-ce que la relaxation linéaire du problème est très difficile. Lors d’expériences préliminaires nous nous sommes rendu compte que CPLEX peut résoudre des instances avec 1000 sommets dans des temps raisonnables. Mais pour des instances de 5000 sommets, il peut prendre jusqu’à 14 jours pour résoudre uniquement la relaxation linéaire. Pour ces raisons nous ne pouvons utiliser de méthodes qui considère la résolution de la relaxation linéaire comme une opération de base, comme par exemple les méthodes de coupes et de branchements. Au lieu d’utiliser CPLEX nous utilisons une implémentation parallèle (utilisant 32 processeurs) de l’algorithme du Volume. L’instance pour laquelle CPLEX demande 14 heures est résolue en 24 minutes par l’implémentation séquentielle et en 10 minutes par l’implémentation parallèle de l’algorithme du Volume. La solution de la relaxation linéaire est utilisée pour construire une solution réalisable, grâce à l’application d’une heuristique de construction gloutonne puis d’une recherche locale. Nous obtenons des résultats comparables aux résultats obtenus par les meilleures heuristiques connues à ce jour, qui utilisent beaucoup plus de mémoire et réalisent beaucoup plus d’opérations. La mémoire est importante dans notre cas, puisque nous travaillons sur des données de très grandes tailles. Nous étudions le dominant du polytope associé au problème du p-médian. Nous discutons de sa relaxation linéaire ainsi que de sa caractérisation polyédrale. Enfin, nous considérons une version plus réaliste du problème de restructuration de données semi-structurées. Grosso modo, nous ajoutons au problème du p-médian original des nouveaux sommets s’ils aident à réduire le coût global des affectations. / The problems we consider in this thesis are of combinatorial nature. Our main interest is the problem of approximating typing of a semistructured data. For example XML is a semistructured data. This problem may be reduced to an instance of the p-median problem. The main obstacle here is the size of the instances that may be very huge, about 10000 and 20000 nodes which imply several hundreds of million variables. For these instances, even solving the linear relaxation is a hard task. In some preliminary results we noticed that Cplex may solve instances of size 1000 in an acceptable time. But for some instances having 5000 nodes, it may needs 14 days for solving only the linear relaxation. Therefore, we cannot use methods that consider the linear relaxation as an elementary operation, as for example branch-and-cut methods. Instead of using Cplex we use the Volume algorithm in a parallel implementation (32 processors).For the instance where the Cplex needs 14 hours, the Volume algorithm in sequential implementation needs 24 minutes and in parallel implementation it needs 10 minutes. The solution of the linear relaxation is used to produce a feasible solution by first applying a greedy and then a local search heuristic. We notice that the results we obtain are relatively the same as those given by the best method known up today, which produces more effort and consumes more memory. Memory is important in our case since the data we consider are huge. We study the dominant of the polytope associated with the p-median problem. We discuss linear relaxation and a polyhedral characterization. Finally, we consider a more realistic version of the p-median problem when applied to the problem of approximating typing of a semistructured data. Roughly speaking, we add new nodes to the underlying graph if this help to reduce the overall cost.
|
4 |
Extrapolation vectorielle et applications aux équations aux dérivées partiellesDuminil, Sébastien 06 July 2012 (has links) (PDF)
Nous nous intéressons, dans cette thèse, à l'étude des méthodes d'extrapolation polynômiales et à l'application de ces méthodes dans l'accélération de méthodes de points fixes pour des problèmes donnés. L'avantage de ces méthodes d'extrapolation est qu'elles utilisent uniquement une suite de vecteurs qui n'est pas forcément convergente, ou qui converge très lentement pour créer une nouvelle suite pouvant admettreune convergence quadratique. Le développement de méthodes cycliques permet, deplus, de limiter le coût de calculs et de stockage. Nous appliquons ces méthodes à la résolution des équations de Navier-Stokes stationnaires et incompressibles, à la résolution de la formulation Kohn-Sham de l'équation de Schrödinger et à la résolution d'équations elliptiques utilisant des méthodes multigrilles. Dans tous les cas, l'efficacité des méthodes d'extrapolation a été montrée.Nous montrons que lorsqu'elles sont appliquées à la résolution de systèmes linéaires, les méthodes d'extrapolation sont comparables aux méthodes de sous espaces de Krylov. En particulier, nous montrons l'équivalence entre la méthode MMPE et CMRH. Nous nous intéressons enfin, à la parallélisation de la méthode CMRH sur des processeurs à mémoire distribuée et à la recherche de préconditionneurs efficaces pour cette même méthode.
|
5 |
Numerical Quality and High Performance In Interval Linear Algebra on Multi-Core Processors / Algèbre linéaire d'intervalles - Qualité Numérique et Hautes Performances sur Processeurs Multi-CœursTheveny, Philippe 31 October 2014 (has links)
L'objet est de comparer des algorithmes de multiplication de matrices à coefficients intervalles et leurs implémentations.Le premier axe est la mesure de la précision numérique. Les précédentes analyses d'erreur se limitent à établir une borne sur la surestimation du rayon du résultat en négligeant les erreurs dues au calcul en virgule flottante. Après examen des différentes possibilités pour quantifier l'erreur d'approximation entre deux intervalles, l'erreur d'arrondi est intégrée dans l'erreur globale. À partir de jeux de données aléatoires, la dispersion expérimentale de l'erreur globale permet d'éclairer l'importance des différentes erreurs (de méthode et d'arrondi) en fonction de plusieurs facteurs : valeur et homogénéité des précisions relatives des entrées, dimensions des matrices, précision de travail. Cette démarche conduit à un nouvel algorithme moins coûteux et tout aussi précis dans certains cas déterminés.Le deuxième axe est d'exploiter le parallélisme des opérations. Les implémentations précédentes se ramènent à des produits de matrices de nombres flottants. Pour contourner les limitations d'une telle approche sur la validité du résultat et sur la capacité à monter en charge, je propose une implémentation par blocs réalisée avec des threads OpenMP qui exécutent des noyaux de calcul utilisant les instructions vectorielles. L'analyse des temps d'exécution sur une machine de 4 octo-coeurs montre que les coûts de calcul sont du même ordre de grandeur sur des matrices intervalles et numériques de même dimension et que l'implémentation par bloc passe mieux à l'échelle que l'implémentation avec plusieurs appels aux routines BLAS. / This work aims at determining suitable scopes for several algorithms of interval matrices multiplication.First, we quantify the numerical quality. Former error analyses of interval matrix products establish bounds on the radius overestimation by neglecting the roundoff error. We discuss here several possible measures for interval approximations. We then bound the roundoff error and compare experimentally this bound with the global error distribution on several random data sets. This approach enlightens the relative importance of the roundoff and arithmetic errors depending on the value and homogeneity of relative accuracies of inputs, on the matrix dimension, and on the working precision. This also leads to a new algorithm that is cheaper yet as accurate as previous ones under well-identified conditions.Second, we exploit the parallelism of linear algebra. Previous implementations use calls to BLAS routines on numerical matrices. We show that this may lead to wrong interval results and also restrict the scalability of the performance when the core count increases. To overcome these problems, we implement a blocking version with OpenMP threads executing block kernels with vector instructions. The timings on a 4-octo-core machine show that this implementation is more scalable than the BLAS one and that the cost of numerical and interval matrix products are comparable.
|
6 |
Extrapolation vectorielle et applications aux équations aux dérivées partielles / Vector extrapolation and applications to partial differential equationsDuminil, Sébastien 06 July 2012 (has links)
Nous nous intéressons, dans cette thèse, à l'étude des méthodes d'extrapolation polynômiales et à l'application de ces méthodes dans l'accélération de méthodes de points fixes pour des problèmes donnés. L'avantage de ces méthodes d'extrapolation est qu'elles utilisent uniquement une suite de vecteurs qui n'est pas forcément convergente, ou qui converge très lentement pour créer une nouvelle suite pouvant admettreune convergence quadratique. Le développement de méthodes cycliques permet, deplus, de limiter le coût de calculs et de stockage. Nous appliquons ces méthodes à la résolution des équations de Navier-Stokes stationnaires et incompressibles, à la résolution de la formulation Kohn-Sham de l'équation de Schrödinger et à la résolution d'équations elliptiques utilisant des méthodes multigrilles. Dans tous les cas, l'efficacité des méthodes d'extrapolation a été montrée.Nous montrons que lorsqu'elles sont appliquées à la résolution de systèmes linéaires, les méthodes d'extrapolation sont comparables aux méthodes de sous espaces de Krylov. En particulier, nous montrons l'équivalence entre la méthode MMPE et CMRH. Nous nous intéressons enfin, à la parallélisation de la méthode CMRH sur des processeurs à mémoire distribuée et à la recherche de préconditionneurs efficaces pour cette même méthode. / In this thesis, we study polynomial extrapolation methods. We discuss the design and implementation of these methods for computing solutions of fixed point methods. Extrapolation methods transform the original sequance into another sequence that converges to the same limit faster than the original one without having explicit knowledge of the sequence generator. Restarted methods permit to keep the storage requirement and the average of computational cost low. We apply these methods for computing steady state solutions of incompressible flow problems modelled by the Navier-Stokes equations, for solving the Schrödinger equation using the Kohn-Sham formulation and for solving elliptic equations using multigrid methods. In all cases, vector extrapolation methods have a useful role to play. We show that, when applied to linearly generated vector sequences, extrapolation methods are related to Krylov subspace methods. For example, we show that the MMPE approach is mathematically equivalent to CMRH method. We present an implementation of the CMRH iterative method suitable for parallel architectures with distributed memory. Finally, we present a preconditioned CMRH method.
|
Page generated in 0.1039 seconds