• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 168
  • 52
  • 23
  • 19
  • 14
  • 9
  • 6
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 368
  • 58
  • 56
  • 56
  • 48
  • 42
  • 41
  • 36
  • 31
  • 29
  • 28
  • 28
  • 24
  • 24
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Characterization of the MIR23A Cluster in Diffuse Large B Cell Lymphoma / Regulation and Targetome Identification

Freytag, Natalie Veronika 03 February 2017 (has links)
No description available.
212

Identification and validation of micrornas for diagnosing type 2 diabetes : an in silico and molecular approach

Anthony, Yancke January 2015 (has links)
>Magister Scientiae - MSc / Type 2 diabetes mellitus (T2DM), a metabolic disease characterized by chronic hyperglycemia, is the most prevalent form of diabetes globally, affecting approximately 95 % of the total number of people with diabetes i.e. approximately 366 million. Furthermore, it is also the most prevalent form in South Africa (SA), affecting approximately 3.5 million individuals. This disease and its adverse complications can be delayed or prevented if detected early. Standardized diagnostic tests for T2DM have a few limitations which include the inability to predict the future risk of normal glucose tolerance individuals developing T2DM, they are dependent on blood glucose concentration, its invasiveness, and they cannot specify between T1DM and T2DM. Therefore, there is a need for biomarkers which could be used as a tool for the early and specific detection of T2DM. MicroRNAs are small non-coding RNA molecules which play a key role in controlling gene expression and certain biological processes. Studies show that dysregulation of microRNAs may lead to various diseases including T2DM, and thus, may be useful biomarkers for disease detection. Therefore, identifying biomarkers like microRNAs as a tool for the early and specific detection of T2DM, have great potential for diagnostic purposes. The main focus of this investigation, therefore, is the early detection of T2DM by the identification and validation of novel biomarkers. Furthermore, based on previous studies, the aim of the investigation was to identify differentially expressed miRNAs as well as identify their potential target genes associated with the onset and progression of T2DM. An in silico approach was used to identify miRNAs found to be differentially expressed in the serum/plasma of T2DM individuals. Three publically available target prediction software were used for target gene prediction of the identified miRNA. The target genes were subjected to functional analysis using a web-based software, namely DAVID. Functions which were clustered with an enrichment score > 1.3 were considered significant. The ranked target genes mostly had gene ontologies linked with “transcription regulation”, “neuron signalling, and “metal ion binding”. The ranked target genes were then split into two lists – an up-regulated (ur) miRNA targeted gene list and a down-regulated (dr) miRNA targeted gene list. The in silico method used in this investigation produced a final total of 4 miRNAs: miR-dr-1, miR-ur-1, miR-ur-2, and miR-ur-3. Based on the bioinformatics results, miR-dr-1 and its target genes LDLR, PPARA and CAMTA1, seemed the most promising miRNA for biomarker validation, due to the function of the target genes being associated with T2DM onset and progression. The expression levels of the miRNAs were then profiled in kidney tissue of male Wistar rats that were on a high fat diet (HFD), streptozotocin (STZ)-induced T1DM, and non-diabetic control rats via qRT-PCR analysis. The hypothesis was that similar miRNA expression would be found in the HFD kidney samples compared to serum expression levels of the miRNA obtained from the two databases, since kidneys are involved in cleansing the blood from impurities. This hypothesis proved to be true for all miRNAs except for miR-ur-2. Additionally, miR-ur-1 seemed the most significant miRNA due to it having different expression ratios for T1DM and T2DM (i.e. -7.65 and 4.2 fold, respectively). Future work, therefore, include validation of the predicted target genes to the miRNAs of interest i.e. miR-dr-1: PPARA and LDLR and miR-ur-1: CACNB2, using molecular approaches such as the luciferase assays and western blots.
213

The Role of Human MSC Derived Exosomes in the Treatment of Periodontal Diseases

Talegaonkar, Sonia S 01 January 2017 (has links)
Periodontal disease affects 47% of Americans over 30. Characterized by microbial dysbiosis and unregulated inflammation, severe periodontitis causes degradation of bone and soft tissue around teeth. Current treatments have limited regenerative outcomes and frequent reinfection by harmful bacteria. Human mesenchymal stem cells (hMSCs) have been shown to promote wound healing and tissue regeneration. Many therapeutic benefits of hMSCs are due to their secretome products, like exosomes. Our long-term goal is to develop periodontal therapies with hMSC exosomes. The objectives of this study were to determine the effect of hMSC-derived exosomes on cellular activity of hMSCs and investigate whether hMSC exosome treatment reduces pro-inflammatory cytokine production in LPS-activated RAW264.7 cells. The specific aims of this study were: 1) Determine the characteristics of hMSC-derived exosomes, 2) Determine the biological effect of exosomes on cellular activity of hMSCs, 3) Determine whether exosomes treatment can inhibit cytokine production in activated RAW264.7 cells, and 4) Determine the role of exosomal miRNA in pro-inflammatory cytokine production of RAW264.7 cells. To investigate, exosomes were first harvested from hMSCs culture media through ultracentrifugation. Exosomes were then observed under a transmission electron microscope (TEM) and assessed for surface markers using Western Blot. A transwell migration assay was used to evaluate the chemotactic effect of exosomes. To study the effect of exosomes on stem cell proliferation, exosomes were administered to hMSCs. The immunogenicity of MSC exosome was also evaluated. After 72 hours, cells were lysed and DNA was measured. To study anti-inflammatory effects of exosomes, LPS stimulated RAW264.7 cells were treated with exosomes. Interleukin-6 (IL-6) and tumor necrosis factor alpha (TNFα) levels of supernatant were measured by ELISA. To study exosomal miRNA, exosomal miRNAs were overexpressed in RAW264.7 cells and these cells were stimulated with LPS. IL-6 and TNFα were measured by ELISA. TEM images showed that exosomes are nano-sized vesicles (~100 nm). Western blot images showed that CD63 and CD81 are enriched in exosomes compared to total cell lysates. Exosome treatment increased cell proliferation and migration in hMSCs. At the doses that are chemotactic and mitogenic, MSC exosomes had minimal effect on the inflammatory cytokine IL-6 production. Treatment with exosomes significantly decreased IL-6 and TNFα production in RAW264.7 cells activated by LPS. Transfecting RAW264.7 cells with exosomal miR-760 significantly decreased IL-6 production, but had minimal effect on TNFα. Our results indicate that exosomes have a pleiotropic activity, which includes stimulating stem cell migration and proliferation, and mitigating the inflammatory response. Therefore, hMSC exosome delivery is promising for the treatment of periodontal diseases.
214

Investigation of cpeb1 transcript regulation and potential functions of CPEB1 in germline development in X. laevis

Smarandache, Anita Klarisa Andreea 16 November 2016 (has links)
No description available.
215

Characterisation of genetic and epigenetic aberrations in paediatric high grade glioma

Channathodiyil, Prasanna January 2016 (has links)
Paediatric high grade glioma (HGG), including diffuse intrinsic pontine glioma (DIPG) are highly aggressive tumours with no effective cures. Lack of understanding of the molecular biology of these tumours, in part due to lack of well-characterised pre-clinical models, is a great challenge in the development of novel therapies. Analysis of paired cell culture/biopsy samples in this study revealed that paediatric HGG short-term cell cultures retain many of the tumour characteristics in vivo. Using a genome-wide approach, copy number, gene and miRNA expression, and methylation changes were characterised in 17 paediatric HGG-derived short-term cell cultures including 3 from DIPG. The majority of the genomic changes were unique from those arising in adult HGG. Approximately 65% (11/17) of paediatric HGG short-term cell cultures had balanced genetic profiles resembling normal karyotypes. The most frequent copy number gain and loss were detected at 14q11.2 (94%) and 8p11.23-p11.22 (59%), respectively. H3F3A (K27M) mutation was present in 2/17 (12%) cases and concurrent loss of CDKN2A and BRAFV600E in 1/17 (6%) case. Genes involved in reelin/PI3K signaling (DAB1), RTK signaling (PTPRE), and arginine biosynthesis (ASS1 and ASL) were frequently deregulated by methylation in these tumours. The anti-growth and anti-migratory properties of DAB1 and PTPRE were demonstrated in vitro. Preliminary investigations validated the therapeutic potential of ADI-PEG20 (arginine depletion), and PI-103 (PI3K/mTOR inhibition) in a subset of paediatric HGG short-term cell cultures. This study has identified novel genetic and epigenetic changes in paediatric HGG that may, following further validation, be translated into potential biomarkers and/or therapeutic targets.
216

Analysis of MicroRNAs in Biological Samples

Khan, Nasrin January 2015 (has links)
MicroRNAs (miRNAs) are a class of small, single-stranded, non-protein coding RNA molecules that regulate cellular messenger RNA (mRNA) and protein levels by binding to specific mRNAs. Aberrant miRNA expression has been shown to be implicated in several diseases, including cancer. Extracellular miRNAs have been found to circulate in the bloodstream and some of their levels have been associated with different diseases. Furthermore, they hold promise as tissue- and blood-based biomarkers for cancer classification and prognostication. Blood-based biomarkers are attractive for cancer screening due to their minimal invasiveness, relatively low cost and ease of reproducibility. New miRNA analysis techniques will add toward the understanding of their biological functions. In this thesis, I investigate the utility of capillary electrophoresis (CE) and mass spectrometry (MS) for analysis of miRNAs through proof-of-concept experiments. In the fi rst part of this work, we developed a Protein-Facilitated Affinity Capillary Electrophoresis (ProFACE) assay for rapid quantification of miRNA levels in blood serum (see List of publications (6)). We also implemented a capillary electrophoresis with laser induced fluorescence detection (CE-LIF) method with online sample pre-concentration for detection of endogenous microRNAs in human serum and cancer cells. 3' modification of miRNA is a physiological and common post-transcriptional event that shows selectivity for specific miRNAs and is observed across species. Recent studies have shown that post-transcriptional addition of nucleotides to the 3' end of miRNAs is a mechanism for miRNA activity regulation. For example, such modifications in plants and C. elegans influence miRNA stability. In humans, effects on miRNA stability and on mRNA target repression have both been observed. Thus, there is a need for miRNA detection techniques which are direct and multiplexed, require minimal sample preparation and provide qualitative information regarding these modifications. We developed a multiplexed miRNA detection technique based on capillary electrophoresis coupled on line with electrospray ionization mass spectrometry (CE-ESI-MS). This method allowed a label-free, direct detection of multiple miRNAs extracted from cancer serum as well as their post-transcriptional modifications with a high mass accuracy.
217

Identification of Mechanisms Regulating Endothelial Cell Capillary Morphogenesis

Howe, Grant Alexander January 2013 (has links)
In order to effectively treat disorders whose pathology is marked by neovascularization, a better understanding of the pathways that mediate the processes involved in angiogenesis is needed. To this end we have identified two important pathways that regulate endothelial cell capillary morphogenesis, a key process in angiogenesis. We have identified the small GTPase RhoB as being induced by vascular endothelial growth factor (VEGF) in human umbilical vein endothelial cells (HUVECs). Depletion of RhoB inhibited endothelial cell VEGF - mediated migration, sprouting, and cord formation. Cells depleted of RhoB showed a marked increase in RhoA activation in response to VEGF. Defects in cord formation in RhoB - depleted cells could be partially restored through treatment with the Rho inhibitor C3 transferase or ROCK I/II inhibitors, indicating increased RhoA activity and enhanced downstream signaling from RhoA contribute to the phenotype of decreased cord formation observed in cells depleted of RhoB. Interestingly, we did not observe a significant change in RhoC activity in RhoB - depleted cells suggesting differential regulation of RhoA and RhoC by RhoB in HUVECs. We have also identified microRNA - 30b (miR - 30b) as being negatively regulated by VEGF and as being a negative regulator of HUVEC capillary morphogenesis. Overexpression of miR - 30b significantly reduced HUVEC cord formation in vitro, while inhibition of miR - 30b enhanced cord formation. Neither overexpression nor inhibition of miR - 30b affected migration or viability of endothelial cells. Interestingly, miR - 30b regulated the expression of TGFβ2 but not TGFβ1, with overexpression of miR - 30b inducing expression of TGFβ2 mRNA and protein, and inducing phosphorylaton of Smad2 , suggesting TGFβ2 produced in response to miR - 30b overexpression functions in an iii autocrine manner to stimulate HUVECs . MiR - 30b effects on TGFβ2 expression were found to be regulated to an extent by ATF2, as miR - 30b overexpressing cells exhibited increased levels of phosphorylated ATF2 , with depletion of ATF2 via siRNA resulting in inhibition of miR - 30b - induced TGFβ2 expression. Treatment of HUVECs with TGFβ2 inhibited cord formation, while TGFβ1 had no effect, indicating a major difference in how endothelial cells respond to these two related growth factors. Inhibition of TGFβ2 with a neutralizing antibody restored cord formation in miR - 30b overexpressing cells to levels similar to control cells, thus identifying TGFβ2 expression as contributing to the inhibitory effects of miR - 30b overexpression on capillary morphogenesis. Thus, we have identified two signaling pathways regulated by VEGF in HUVECs that further our understanding of the process of angiogenesis and may provide novel targets for therapeutic intervention into diseases involving angiogenesis.
218

Exercice physique et progression du cancer de la prostate : effets combinés avec la prise d’antioxydants naturels ou la radiothérapie externe : identification de voies de signalisation redox-dépendantes / Physical exercise and prostate cancer progression : combined effects with natural antioxidant intake or external radiotherapy : identification of redox-dependant signaling pathways

Guéritat, Jordan 10 April 2015 (has links)
Le cancer de la prostate est un problème de santé publique majeur. L’exercice physique régulier fait désormais partie des moyens bien décrits pour améliorer la qualité de vie des patients atteints de cancer. Une activité physique quotidienne est donc recommandée pendant et après le traitement. Toutefois, aucune étude ne s’est intéressée aux interactions potentielles entre l’exercice physique, la consommation d’antioxydants et la radiothérapie. L’absence de connaissances sur les mécanismes moléculaires associés à ces stratégies connues pour moduler le stress oxydant, un facteur crucial dans l’évolution de la carcinogenèse prostatique, soulève aujourd’hui une question majeure : l’exercice physique influence-t-il la progression tumorale ? Les objectifs de ce travail de thèse étaient de déterminer les effets de l’exercice physique, combinée ou non à d’autres stratégies, sur la progression du cancer de la prostate et d’identifier des mécanismes moléculaires notamment redox-sensibles impliqués dans ces effets. En s’appuyant sur différentes études in vitro et in vivo, nos travaux ont mis en évidence que l’exercice physique prévient la progression du cancer de la prostate via la régulation du statut redox et de voies de signalisation redox-dépendantes, ou via une modulation de la cholestérolémie ou encore du profil d’expression des miRNAs. Nos travaux démontrent également que l’exercice physique associé à la prise d’antioxydants alimentaires inhibe les effets antiprolifératifs de ces stratégies isolées, et inversement, que l’exercice physique potentialise l’efficacité de la radiothérapie. / Prostate cancer is a major public health problem. It has now been widely recognized that regular physical exercise improves the quality of life of cancer patients. Thirty minutes of physical activity a day is recommended during and after treatment. However, potential interactions of physical exercise, dietary antioxidant intake and radiotherapy have not yet been studied. The lack of knowledge on molecular mechanisms associated with these strategies known to modulate oxidative stress, a key factor in prostate cancer evolution, raises a question: does physical exercise influence the efficiency of patient management and tumor evolution? The objectives of this work was to determine the effects of physical exercise, combined or not with others strategies, on prostate cancer progression and to identify redox sensitive-molecular mechanisms involved in these effects. We used different in vitro and in vivo approaches to achieve these aims. Our researches underline the essential role of physical exercise in prevention of prostate tumor progression, through a redox state and signaling pathways regulation, but also through a modulation of cholesterol levels or miRNA expression profiles. We also demonstrate that physical exercise associated to dietary antioxidant consumption limits anti-proliferative effects of these isolated treatments. Inversely, we reported that regular physical exercise enhances radiotherapy efficiency
219

Analysis of microRNA precursors in multiple species by data mining techniques / Análise de precursores de microRNA em múltiplas espécies utilizando técnicas de mineração de dados

Ivani de Oliveira Negrão Lopes 18 June 2014 (has links)
RNA Sequencing has recently emerged as a breakthrough technology for microRNA (miRNA) discovery. This technology has allowed the discovery of thousands of miRNAs in a large number of species. However, despite the benefits of this technology, it also carries its own limitations, including the need for sequencing read libraries and of the genome. Differently, ab initio computational methods need only the genome as input to search for genonic locus likely to give rise to novel miRNAs. In the core of most of these methods, there are predictive models induced by using data mining techniques able to distinguish between real (positive) and pseudo (negative) miRNA precursors (pre-miRNA). Nevertheless, the applicability of current literature ab initio methods have been compromised by high false detection rates and/or by other computational difficulties. In this work, we investigated how the main aspects involved in the induction of predictive models for pre-miRNA affect the predictive performance. Particularly, we evaluate the discriminant power of feature sets proposed in the literature, whose computational costs and composition vary widely. The computational experiments were carried out using sequence data from 45 species, which covered species from eight phyla. The predictive performance of the classification models induced using large training set sizes (≥ 1; 608) composed of instances extracted from real and pseudo human pre-miRNA sequences did not differ significantly among the feature sets that lead to the maximal accuracies. Moreover, the differences in the predictive performances obtained by these models, due to the learning algorithms, were neglectable. Inspired by these results, we obtained a feature set which can be computed 34 times faster than the less costly among those feature sets, producing the maximal accuracies, albeit the proposed feature set has achieved accuracy within 0.1% of the maximal accuracies. When classification models using the elements previously discussed were induced using small training sets (120) from 45 species, we showed that the feature sets that produced the highest accuracies in the classification of human sequences were also more likely to produce higher accuracies for other species. Nevertheless, we showed that the learning complexity of pre-miRNAs vary strongly among species, even among those from the same phylum. These results showed that the existence of specie specific features indicated in previous studies may be correlated with the learning complexity. As a consequence, the predictive accuracies of models induced with different species and same features and instances spaces vary largely. In our results, we show that the use of training examples from species phylogenetically more complex may increase the predictive performances for less complex species. Finally, by using ensembles of computationally less costly feature sets, we showed alternative ways to increase the predictive performance for many species while keeping the computational costs of the analysis lower than those using the feature sets from the literature. Since in miRNA discovery the number of putative miRNA loci is in the order of millions, the analysis of putative miRNAs using a computationally expensive feature set and or inaccurate models would be wasteful or even unfeasible for large genomes. In this work, we explore most of the learning aspects implemented in current ab initio pre-miRNA prediction tools, which may lead to the development of new efficient ab initio pre-miRNA discovery tools / O sequenciamento de pequenos RNAs surgiu recentemente como uma tecnologia inovadora na descoberta de microRNAs (miRNA). Essa tecnologia tem facilitado a descoberta de milhares de miRNAs em um grande número de espécies. No entanto, apesar dos benefícios dessa tecnologia, ela apresenta desafios, como a necessidade de construir uma biblioteca de pequenos RNAs, além do genoma. Diferentemente, métodos computacionais ab initio buscam diretamente no genoma regiões prováveis de conter miRNAs. A maioria desses métodos usam modelos preditivos capazes de distinguir entre os verdadeiros (positivos) e pseudo precursores de miRNA - pre-miRNA - (negativos), os quais são induzidos utilizando técnicas de mineração de dados. No entanto, a aplicabilidade de métodos ab initio da literatura atual é limitada pelas altas taxas de falsos positivos e/ou por outras dificuldades computacionais, como o elevado tempo necessário para calcular um conjunto de atributos. Neste trabalho, investigamos como os principais aspectos envolvidos na indução de modelos preditivos de pre-miRNA afetam o desempenho preditivo. Particularmente, avaliamos a capacidade discriminatória de conjuntos de atributos propostos na literatura, cujos custos computacionais e a composição variam amplamente. Os experimentos computacionais foram realizados utilizando dados de sequências positivas e negativas de 45 espécies, cobrindo espécies de oito filos. Os resultados mostraram que o desempenho preditivo de classificadores induzidos utilizando conjuntos de treinamento com 1608 ou mais vetores de atributos calculados de sequências humanas não diferiram significativamente, entre os conjuntos de atributos que produziram as maiores acurácias. Além disso, as diferenças entre os desempenhos preditivos de classificadores induzidos por diferentes algoritmos de aprendizado, utilizando um mesmo conjunto de atributos, foram pequenas ou não significantes. Esses resultados inspiraram a obtenção de um conjunto de atributos menor e que pode ser calculado até 34 vezes mais rapidamente do que o conjunto de atributos menos custoso produzindo máxima acurácia, embora a acurácia produzida pelo conjunto proposto não difere em mais de 0.1% das acurácias máximas. Quando esses experimentos foram executados utilizando vetores de atributos calculados de sequências de outras 44 espécies, os resultados mostraram que os conjuntos de atributos que produziram modelos com as maiores acurácias utilizando vetores calculados de sequências humanas também produziram as maiores acurácias quando pequenos conjuntos de treinamento (120) calculados de exemplos de outras espécies foram utilizadas. No entanto, a análise destes modelos mostrou que a complexidade de aprendizado varia amplamente entre as espécies, mesmo entre aquelas pertencentes a um mesmo filo. Esses resultados mostram que a existência de características espécificas em pre-miRNAs de certas espécies sugerida em estudos anteriores pode estar correlacionada com a complexidade de aprendizado. Consequentemente, a acurácia de modelos induzidos utilizando um mesmo conjunto de atributos e um mesmo algoritmo de aprendizado varia amplamente entre as espécies. i Os resultados também mostraram que o uso de exemplos de espécies filogeneticamente mais complexas pode aumentar o desempenho preditivo de espécies menos complexas. Por último, experimentos computacionais utilizando técnicas de ensemble mostraram estratégias alternativas para o desenvolvimento de novos modelos para predição de pre-miRNA com maior probabilidade de obter maior desempenho preditivo do que estratégias atuais, embora o custo computacional dos atributos seja inferior. Uma vez que a descoberta de miRNAs envolve a análise de milhares de regiões genômicas, a aplicação prática de modelos preditivos de baixa acurácia e/ou que dependem de atributos computacionalmente custosos pode ser inviável em análises de grandes genomas. Neste trabalho, apresentamos e discutimos os resultados de experimentos computacionais investigando o potencial de diversas estratégias utilizadas na indução de modelos preditivos para predição ab initio de pre-miRNAs, que podem levar ao desenvolvimento de ferramentas ab initio de maior aplicabilidade prática
220

Evaluation du rôle de la niche hématopoïétique dans l'induction des syndromes myélodysplasiques : rôle de dicer1 et du stress oxydatif / The implication of hematopoietic niche in induction of myelodysplastic syndromes : the role of Dicer1 and oxidative stress

Meunier, Mathieu 05 April 2018 (has links)
Les syndromes myélodysplasiques (SMD) sont dus à une atteinte oligoclonale de la cellule souche hématopoïétique aboutissant à une dysplasie des lignées myéloïdes, des cytopénies sanguines et une évolution fréquente vers la leucémie aiguë. De nombreuses mutations décrites dans des gènes contrôlant la régulation épigénétique sont responsables de la genèse des SMD. Mais des travaux récents montrent également que des anomalies du microenvironnement médullaire, notamment des cellules stromales mésenchymateuses (CSM), peuvent induire et propager un SMD suggérant l’idée d’une communication intercellulaire étroite entre la niche et les cellules hématopoïétiques. L’invalidation du gène Dicer1 (RNASE de type III impliquée dans le processing des microARN) dans les progéniteurs ostéoblastiques murins induit un véritable SMD avec dysmyélopoïèse.Nous avons confirmé la sous-expression de Dicer1 dans les CSM SMD à partir de prélèvements primaires de moelle totale et dans les CSM en expansion. La sous-expression de Dicer1 s’accompagne d’une dérégulation du profil des microARN au sein de CSM SMD mise en évidence par étude transcriptomique des CSM SMD vs CSM témoins. Nous avons découvert une possible cible thérapeutique : le miR-486-5p que nous avons retrouvé constamment surexprimé dans les CSM SMD. Un des moyens pour les CSM d’influer sur les cellules souches hématopoïétiques peut se faire par la sécrétion de vésicules extracellulaires (EVs). Ces EVs sont hétérogènes et peuvent être définies par leur taille. Nous nous sommes plus particulièrement intéressés aux petites vésicules extracellulaires (sEVs) contenant la fraction exosomale qui est connue comme pouvant transporter des microARN, mARN et des protéines entre les cellules. Nous avons retrouvé ce miR-486-5p transporté comme cargo dans les sEVs sécrétées des CSM, des CSM vers les CD34+. De plus, nous montrons dans un modèle de co-incubation (sEVs avec CD34+ de sujets sains), que sur le plan fonctionnel, les sEVs provenant de CSM SMD induisent plus d’apoptose, plus de stress oxydatif ainsi que plus de dommage à l’ADN.Par ailleurs, la surcharge martiale observée chez les patients SMD est également responsable d’un stress oxydatif. Le déférasirox (DFX), un chélaleur de fer, a montré dans le cadre d’études rétrospectives une amélioration de l’érythropoïèse chez des patients SMD. Grâce à un modèle de différenciation érythroïde avec surcharge martiale, nous avons montré que de faibles doses de DFX induisent une meilleure prolifération des progéniteurs érythroïdes (moins d’apoptose et plus de cellules en cycle) via une activation de NF-κB. Cette activation est due à une diminution du niveau de dérivés réactifs de l’oxygène (ROS) en rapport avec une diminution du fer labile et est contrôlée de manière très fine par le niveau de ROS.Enfin, nous avons utilisé les propriétés du microenvironnement médullaire pour établir un modèle murin de SMD humain. En effet, la relative incapacité des cellules souches myélodysplasiques humaines de greffer et de reconstituer une hématopoïèse pathologique dans des souris immunodéprimées suggère que ces cellules souches SMD doivent avoir besoin d’un support extrinsèque du microenvironnement. Nous avons réalisé un modèle de souris humanisées en co-injectant des CSM et des CD34+ en intratibial. Une prise de greffe a été observée chez toutes les souris injectées et avons pu étudier l’évolution clonale au fil des générations dans les différentes sous-populations de progéniteurs myéloïdes (common myeloid progenitors (CMP), granulocyte macrophage progenitors (GMP) and megakaryocyte–erythroid progenitor (MEP)). Notre modèle est stable au cours des générations avec persistance du clone fondateur initial.En conclusion, ce travail confirme le rôle prépondérant du microenvironnement médullaire dans la genèse et la physiopathologie des syndromes myélodysplasiques et ouvre la voie à de nouvelles possibilités thérapeutiques. / Myelodysplastic syndromes (MDS) are hematopoietic stem cell (HSC) oligoclonal diseases leading to dysplasia, blood cytopenia and evolution to acute leukemia. Numerous mutations in genes involved in epigenetic regulation are responsible of MDS genesis. But recently, studies show that medullar microenvironment, particularly mesenchymal stromal cells (MSC), could induces and propagates a truly MDS suggesting a narrow communication between HSC and this niche. Dicer1’s (type III RNAse implicating in microRNA processing) invalidation in murine osteoblastic progenitors induces a MDS with sign of dysplasia.In this work, we have confirmed the under expression of Dicer1 in MDS mesenchymal stromal cells from total bone marrow and cultured MSC. Dicer1 down regulation leads to a deregulation of miRNome profile in MDS MSC highlighted by transcriptomic approaches. We found a potential therapeutic target: miR-486-5p which is constantly overexpressed in MDS MSC. Extracellular vesicles (EVs) could be a possible way for MSC to influence HSC fates. Those EVs are heterogeneous are could be characterized by their sight. We mainly focused on small EVs (sEVs) containing the exosomal fraction known to be able to carry miRNA, mRNA and proteins. We found that miR-486-5p is carry from MSC to the HSC. Transcriptomic analyses of HD HSC overexpressing miR-486-5p are ongoing. Moreover, in a co-incubation model (sEVs and healthy donor (HD) HSC), sEVs coming from MDS MSC induced apoptosis, oxidative stress and DNA damages.Moreover, iron overload seen in MDS patients is also able to induce DNA damages and oxidative stress. Deferasirox (DFX), an iron chelator, has shown an erythropoiesis improvement in MDS patients. Using an erythroid differentiation model with iron overload, we have observed that low dose of DFX induce a better proliferation of erythroid progenitors (less apoptosis and more cycling cells) due to NF-κB activation. This activation is due to a decrease of reactive oxygen species level in relation to a decrease of the labile iron pool.Finally, we have used medullar microenvironment properties to establish a murine model of MDS. Indeed, MDS HSC incapacity to reconstitute a pathological hematopoiesis in immunocompromised mice suggests that MDS HSC need an extrinsic support from the microenvironment. We have engineered a MDS patient derived xenograft (PDX) model by intra-tibial co-injection CD34+ cells with MSC. All mice engrafted et we have follow the clonal evolution over mice generation in the different subset of myeloid progenitors. (common myeloid progenitors (CMP), granulocyte macrophage progenitors (GMP) and megakaryocyte–erythroid progenitor (MEP)). Our model is stable over generations with persistence of the initial founding clone.In conclusion, this work confirms the preponderant role of the medullary microenvironment in the genesis and physiopathology of myelodysplastic syndromes and opens the way to new therapeutic possibilities.

Page generated in 0.0332 seconds