• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 82
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 125
  • 125
  • 125
  • 125
  • 34
  • 32
  • 30
  • 27
  • 26
  • 24
  • 24
  • 23
  • 22
  • 21
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Does Ras/MEK signaling stimulate the expression of thioredoxin reductase?

Ho, Ian-ian., 何欣欣. January 2007 (has links)
published_or_final_version / Medical Sciences / Master / Master of Medical Sciences
12

Regulation of equilibrative nucleoside transporter-1 by protein kinaseC and mitogen-activating protein kinase

Cheng, Kwan-wai., 鄭軍偉. January 2005 (has links)
published_or_final_version / Medical Sciences / Master / Master of Medical Sciences
13

TAp73α enhances the cellular sensitivity to cisplatin in ovarian cancer cells via the JNK signaling pathway

Zhang, Pingde., 张萍德. January 2011 (has links)
Ovarian cancer is the most lethal gynecological malignancy. Most of ovarian cancer patients relapse and subsequently die due to the development of resistance to chemotherapy. P73 belongs to the tumor suppressor p53 family. Like p53, the transcriptionally active TAp73 can bind specifically to p53 responsive elements and transactivates some of the p53 target genes, and finally leads to cell cycle arrest and apoptosis. TAp73 can be induced by DNA damage to enhance cellular sensitivity to anticancer agents in human cancer cells. However, the functions of TAp73 in ovarian cancer cells and the role in the regulation of cellular response to commonly used chemotherapeutic agents cisplatin are still poorly understood. The aims of this study were to examine the functions of TAp73 in ovarian cancer cells and its role in cellular response to cisplatin, as well as the relationship between TAp73 and p53 in ovarian cancer cells. Functional studies showed that over-expression of TAp73alpha (TAp73α) inhibited cell proliferation, colony formation ability and anchorage-independent growth of ovarian cancer cells, and this was irrespective of p53 expression status. In addition, TAp73α inhibited cell growth by arresting cell cycle at G2/M phase and up-regulating the expressions of G2/M regulators of p21, 14-3-3sigma and GADD45α. TAp73α enhanced the cellular sensitivity to cisplatin through the activation of JNK signaling pathway, at least partially, in ovarian cancer cells. TAp73α activated the JNK pathway through the up-regulation of its target gene GADD45α and subsequent activation of MKK4, the JNK up-stream kinase. Inhibition of JNK activity by a specific inhibitor (SP600125) or small interfering RNAs (siRNAs) significantly abrogated TAp73-mediated apoptosis induced by cisplatin. Moreover, the activations of MKK4, JNK and c-Jun were abolished when GADD45α was knocked down by siRNAs, and the JNK-dependent apoptosis was not observed. Collectively, these results supported that TAp73α was able to mediate apoptotic response to cisplatin through the GADD45α/MKK4/JNK signaling pathway, which was respective of p53 expression status. Further investigation on the relationship between TAp73α and p53 demonstrated that TAp73α increased p53 protein, but not mRNA expression by attenuating p53 protein degradation in wild-type p53 ovarian cancer cells. TAp73α could directly interact with p53 protein, which might interfere with the binding ability of MDM2 to p53, and consequently block the p53 protein degradation. In addition, TAp73α inactivated the Akt and ERK pathways and activated the p38 pathway in response to cisplatin in wild-type p53 OVCA433, but not in null-p53 SKOV3 cells, suggesting that the effect of TAp73α on these pathways might be p53-dependent. These results indicated that a functional cooperation of TAp73α and p53, to some extent, existed in ovarian cancer cells. In conclusion, this study demonstrated that TAp73α acted as a tumor suppressor in ovarian carcinogenesis. It promoted the cellular sensitivity to cisplatin via, at least partially, the activation of JNK signaling pathway. These TAp73α functions were irrespective of p53 expression. In addition, TAp73α was able to bind to p53 and increase p53 expression. / published_or_final_version / Obstetrics and Gynaecology / Doctoral / Doctor of Philosophy
14

Modulation of sodium iodide symporter expression and activity at post-translational levels

Vadysirisack, Douangsone D., January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 137-154).
15

Changes in mitogen-activated protein kinase phosphorylation and inorganic phosphate induced by skeletal muscle contraction /

Wretman, Charlott, January 2002 (has links)
Diss. (sammanfattning) Stockholm : Karol. Inst., 2002. / Härtill 4 uppsatser.
16

Does Ras/MEK signaling stimulate the expression of thioredoxin reductase? /

Ho, Ian-ian. January 2007 (has links)
Thesis (M. Med. Sc.)--University of Hong Kong, 2007.
17

Activation of TORC1 transcriptional coactivator through MEKK1-introduced phosphorylation and ubiquitination

Siu, Yeung-tung. January 2009 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2009. / Includes bibliographical references (leaves 143-174). Also available in print.
18

Antiviral and antitumor functions of RNase L

Li, Geqiang. January 2005 (has links)
Thesis (Ph. D.)--Case Western Reserve University, 2005. / [School of Medicine] Department of Genetics. Includes bibliographical references. Available online via OhioLINK's ETD Center.
19

Microglial LRP1 modulates JNK activation a signaling cascade that also regulates apolipoprotein E levels /

Pocivavsek, Ana. January 2009 (has links)
Thesis (Ph.D.)--Georgetown University, 2009. / Includes bibliographical references.
20

Differential regulation of FOXM1 isoforms by RaF/MEK/ERK signaling

Lam, King-yin, Andy. January 2010 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2010. / Includes bibliographical references (leaves 73-81). Also available in print.

Page generated in 0.111 seconds