Spelling suggestions: "subject:"amitosis detection"" "subject:"amitosis 1detection""
1 |
Segmentation and Contrasting in Different Biomedical Imaging ApplicationsTayyab, Muhammad 02 February 2012 (has links) (PDF)
Advancement in Image Acquisition Equipment and progress in Image Processing Methods have brought the mathematicians and computer scientists into areas which are of huge importance for physicians and biologists. Early diagnosis of diseases like blindness, cancer and digestive problems have been areas of interest in medicine. Development of Laser Photon Microscopy and other advanced equipment already provides a good idea of very interesting characteristics of the object being viewed. Still certain images are not suitable to extract sufficient information out of that image. Image Processing methods have been providing good support to provide useful information about the objects of interest in these biological images. Fast computational methods allow complete analysis, in a very short time, of a series of images, providing a reasonably good idea about the desired characteristics. The thesis covers application of these methods in 3 series of images intended for 3 different types of diagnosis or inference. Firstly, Images of RP-mutated retina were treated for detection of rods, where there were no cones present. The software was able to detect and count the number of cones in each frame. Secondly, a gastrulation process in drosophila was studied to observe any mitosis and results were consistent with recent research. Finally, another series of images were treated where biological cells were observed to undergo mitosis. The source was a video from a photon laser microscope. In this video, objects of interest were biological cells. The idea was to track the cells if they undergo mitosis. Cell position, spacing and sometimes contour of the cell membrane are broadly the factors limiting the accuracy in this video. Appropriate method of image enhancement and segmentation were chosen to develop a computational method to observe this mitosis. Cases where human intervention may be required have been proposed to eliminate any false inference.
|
2 |
Automated Mitosis Detection in Color and Multi-spectral High-Content Images in Histopathology : Application to Breast Cancer Grading in Digital Pathology / Détection automatique de Mitoses dans des images Histopathologiques haut-contenu, couleur multispectrales : application à la gradation du cancer du sein en pathologie numériqueIrshad, Humayun 20 January 2014 (has links)
La gradation de lames de biopsie fournit des informations pronostiques essentielles pour le diagnostic et le traitement. La détection et le comptage manuel des mitoses est un travail fastidieux, sujet à des variations inter-et intra- observateur considérables. L'objectif principal de cette thèse de doctorat est le développement d'un système capable de fournir une détection des mitoses sur des images provenant de différents types de scanners rapides automatiques, ainsi que d'un microscope multispectral. L'évaluation des différents systèmes proposés est effectuée dans le cadre du projet MICO (MIcroscopie COgnitive, projet ANR TecSan piloté par notre équipe). Dans ce contexte, les systèmes proposés ont été testés sur les données du benchmark MITOS. En ce qui concerne les images couleur, notre système s'est ainsi classé en deuxième position de ce concours international, selon la valeur du critère F-mesure. Par ailleurs, notre système de détection de mitoses sur images multispectrales surpasse largement les meilleurs résultats obtenus durant le concours. / Digital pathology represents one of the major and challenging evolutions in modernmedicine. Pathological exams constitute not only the gold standard in most of medicalprotocols, but also play a critical and legal role in the diagnosis process. Diagnosing adisease after manually analyzing numerous biopsy slides represents a labor-intensive workfor pathologists. Thanks to the recent advances in digital histopathology, the recognitionof histological tissue patterns in a high-content Whole Slide Image (WSI) has the potentialto provide valuable assistance to the pathologist in his daily practice. Histopathologicalclassification and grading of biopsy samples provide valuable prognostic information thatcould be used for diagnosis and treatment support. Nottingham grading system is thestandard for breast cancer grading. It combines three criteria, namely tubule formation(also referenced as glandular architecture), nuclear atypia and mitosis count. Manualdetection and counting of mitosis is tedious and subject to considerable inter- and intrareadervariations. The main goal of this dissertation is the development of a framework ableto provide detection of mitosis on different types of scanners and multispectral microscope.The main contributions of this work are eight fold. First, we present a comprehensivereview on state-of-the-art methodologies in nuclei detection, segmentation and classificationrestricted to two widely available types of image modalities: H&E (HematoxylinEosin) and IHC (Immunohistochemical). Second, we analyse the statistical and morphologicalinformation concerning mitotic cells on different color channels of various colormodels that improve the mitosis detection in color datasets (Aperio and Hamamatsu scanners).Third, we study oversampling methods to increase the number of instances of theminority class (mitosis) by interpolating between several minority class examples that lietogether, which make classification more robust. Fourth, we propose three different methodsfor spectral bands selection including relative spectral absorption of different tissuecomponents, spectral absorption of H&E stains and mRMR (minimum Redundancy MaximumRelevance) technique. Fifth, we compute multispectral spatial features containingpixel, texture and morphological information on selected spectral bands, which leveragediscriminant information for mitosis classification on multispectral dataset. Sixth, we performa comprehensive study on region and patch based features for mitosis classification.Seven, we perform an extensive investigation of classifiers and inference of the best one formitosis classification. Eight, we propose an efficient and generic strategy to explore largeimages like WSI by combining computational geometry tools with a local signal measureof relevance in a dynamic sampling framework.The evaluation of these frameworks is done in MICO (COgnitive MIcroscopy, ANRTecSan project) platform prototyping initiative. We thus tested our proposed frameworks on MITOS international contest dataset initiated by this project. For the color framework,we manage to rank second during the contest. Furthermore, our multispectral frameworkoutperforms significantly the top methods presented during the contest. Finally, ourframeworks allow us reaching the same level of accuracy in mitosis detection on brightlightas multispectral datasets, a promising result on the way to clinical evaluation and routine.
|
3 |
Segmentation and Contrasting in Different Biomedical Imaging Applications / Amélioration de l'image et la segmentation : applications en imagerie médicaleTayyab, Muhammad 02 February 2012 (has links)
Avancement dans l'acquisition d'image et le progrès dans les méthodes de traitement d'image ont apporté les mathématiciens et les informaticiens dans les domaines qui sont d'une importance énorme pour les médecins et les biologistes. Le diagnostic précoce de maladies (comme la cécité, le cancer et les problèmes digestifs) ont été des domaines d'intérêt en médecine. Développement des équipements comme microscope bi-photonique à balayage laser et microscope de fluorescence par réflexion totale interne fournit déjà une bonne idée des caractéristiques très intéressantes sur l'objet observé. Cependant, certaines images ne sont pas appropriés pour extraire suffisamment d'informations sur de cette image. Les méthodes de traitement d'image ont été fournit un bon soutien à extraire des informations utiles sur les objets d'intérêt dans ces images biologiques. Rapide méthodes de calcul permettent l'analyse complète, dans un temps très court, d'une série d'images, offrant une assez bonne idée sur les caractéristiques souhaitées. La thèse porte sur l'application de ces méthodes dans trois séries d'images destinées à trois différents types de diagnostic ou d'inférence. Tout d'abord, Images de RP-muté rétine ont été traités pour la détection des cônes, où il n'y avait pas de bâtonnets présents. Le logiciel a été capable de détecter et de compter le nombre de cônes dans chaque image. Deuxièmement, un processus de gastrulation chez la drosophile a été étudié pour observer toute la mitose et les résultats étaient cohérents avec les recherches récentes. Enfin, une autre série d'images ont été traités où la source était une vidéo à partir d'un microscopie photonique à balayage laser. Dans cette vidéo, des objets d'intérêt sont des cellules biologiques. L'idée était de suivre les cellules si elles subissent une mitose. La position de la cellule, la dispersion spatiale et parfois le contour de la membrane cellulaire sont globalement les facteurs limitant la précision dans cette vidéo. Des méthodes appropriées d'amélioration de l'image et de segmentation ont été choisies pour développer une méthode de calcul pour observer cette mitose. L'intervention humaine peut être requise pour éliminer toute inférence fausse. / Advancement in Image Acquisition Equipment and progress in Image Processing Methods have brought the mathematicians and computer scientists into areas which are of huge importance for physicians and biologists. Early diagnosis of diseases like blindness, cancer and digestive problems have been areas of interest in medicine. Development of Laser Photon Microscopy and other advanced equipment already provides a good idea of very interesting characteristics of the object being viewed. Still certain images are not suitable to extract sufficient information out of that image. Image Processing methods have been providing good support to provide useful information about the objects of interest in these biological images. Fast computational methods allow complete analysis, in a very short time, of a series of images, providing a reasonably good idea about the desired characteristics. The thesis covers application of these methods in 3 series of images intended for 3 different types of diagnosis or inference. Firstly, Images of RP-mutated retina were treated for detection of rods, where there were no cones present. The software was able to detect and count the number of cones in each frame. Secondly, a gastrulation process in drosophila was studied to observe any mitosis and results were consistent with recent research. Finally, another series of images were treated where biological cells were observed to undergo mitosis. The source was a video from a photon laser microscope. In this video, objects of interest were biological cells. The idea was to track the cells if they undergo mitosis. Cell position, spacing and sometimes contour of the cell membrane are broadly the factors limiting the accuracy in this video. Appropriate method of image enhancement and segmentation were chosen to develop a computational method to observe this mitosis. Cases where human intervention may be required have been proposed to eliminate any false inference.
|
Page generated in 0.0646 seconds