• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 20
  • 13
  • 8
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 157
  • 58
  • 57
  • 34
  • 26
  • 22
  • 22
  • 17
  • 16
  • 16
  • 16
  • 15
  • 15
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Dynamic chromatin associated ubiquitination with cell cycle progression in human cancer cells

Arora, Mansi 18 August 2014 (has links)
No description available.
22

A cytogenetic map for the genomic studies of the West Nile Virus vector Culex tarsalis

Little, Chantelle Jenae 12 June 2020 (has links)
Culex tarsalis is a major vector of West Nile Virus (WNV) in North America. Although the genome for this species was recently sequenced, the physical genome map has not developed. Unlike other Culex species, that have sex-determination locus on chromosome 1, the sex locus in Cx. tarsalis is located on chromosome 3, the longest chromosome. It is currently unknown if this difference is associated with chromosomal rearrangements. The objectives of this study were to develop a high-resolution map for the precise physical genome mapping in Cx. tarsalis and to compare mitotic chromosomes between three species of Culicinae mosquitoes. Using mitotic chromosomes from imaginal discs of 4th instar larvae of Cx. tarsalis, we developed idiograms based on morphology and proportions of the mitotic chromosomes. In addition, the physical mapping of ribosomal genes using fluorescence in situ hybridization was performed. The comparative analysis of Cx. tarsalis to Cx. pipiens and Cx. quinquefasciatus chromosomes showed that the total chromosome length in Cx. tarsalis is longer than the other two species suggesting the bigger genome size in this mosquito. A comparison of the relative chromosome length between the species indicated no significant differences suggesting that no large chromosomal translocation occurred between the species. Comparisons of the centromeric indexes demonstrated a significant difference in chromosome 1 between Cx. pipiens and Cx. quinquefasciatus. This difference suggests the presence of pericentric inversion between the species or amplification of ribosomal genes in Cx. pipiens. Studying mosquito chromosomes advances our understanding of Culex cytogenetics. Further comparative physical mapping of the three major mosquito genera will help us to understand the evolution of genus Culex better and to develop genome-based strategies for the vector control. / Master of Science in Life Sciences / West Nile Virus (WNV) is the most common virus transmitted to humans by mosquitoes in the United States. While many species of mosquitoes are known to carry WNV, Culex tarsalis is a major vector on the west coast of North America. However, previous research on Cx. tarsalis lack chromosome studies on this mosquito. Our study aims to develop a high-quality chromosome map for Cx. tarsalis and to compare the mitotic chromosomes of Cx. tarsalis and Cx. quinquefasciatus and Cx. pipiens in respect of chromosomal rearrangements. We used a fluorescent DNA probe to find the location of the ribosomal locus in the chromosomes of Cx. tarsalis. This study developed a cytogenetic tool for further genomic studies of Cx. tarsalis that will help to develop genome-based strategies for vector control. Comparing the physical mapping of the three major mosquito genera will help to understand the genome evolution in Culicinae mosquitoes better.
23

Genetic analysis of the amino terminus of spindle pole component spc110p /

Nguyen, Thu Xuan Thi. January 2000 (has links)
Thesis (Ph. D.)--University of Washington, 2000. / Vita. Includes bibliographical references (leaves 100).
24

Characterizing BUBR1 interactions with MAD2 and p31comet during the Mitotic Checkpoint

LaBelle, Jenna J. January 2018 (has links)
No description available.
25

Studying centrosome formation and the consequences of centrosome loss in Drosophila melanogaster

Baumbach, Janina January 2014 (has links)
Centrioles are conserved microtubule-based structures that are required for the formation of two important cellular organelles, centrosomes and cilia. Centrosomes form the poles of the mitotic spindle and consist of a pair of centrioles surrounded by a matrix of pericentriolar material (PCM) that has the ability to nucleate and organise microtubules. Centrosome defects are implicated into a variety of human diseases including cancer, microcephaly, and ciliopathies. Therefore it is of great interest to understand the mechanisms that lead to centrosome formation and the consequences that centrosome defects have in cells. I have analysed the roles of several centrosomal proteins in centrosome assembly in Drosophila. My results indicate that Sak/PLK4 is only required for the initial step of centriole duplication, but has no further role in recruitment of PCM. I show that two proteins important for PCM recruitment, Asterless (Asl) and Spd-2, are preferentially phosphorylated when they are integrated into the centrosome and I identified these phosphorylation sites using a phosphoproteomic screen. A phosphorylation site in Asl is specifically phosphorylated in mitosis, and the phosphorylation state of Spd-2 regulates its maintenance at the centrosome, suggesting that phosphorylation of PCM proteins is an important mechanism to ensure PCM assembly specifically at the centrosome and in mitosis. I have performed a global transcriptional analysis of flies lacking centrosomes or having extra centrosomes to investigate the effects of centrosomal defects on a cellular level. Surprisingly, my results indicate that centrosome defects per se do not dramatically alter cellular physiology. Finally, I demonstrate that in the absence of centrioles acentrosomal microtubule-organising centres (aMTOCs) are formed in an Asl- and Cnn-dependent fashion, and I show that these aMTOCs can contribute to spindle focusing in acentrosomal cells.
26

Cyclins in the slime mould Dictyostelium discoideum

Mayall, Stephen James January 1996 (has links)
No description available.
27

Polyploidy and Mitotic Cell Death are Two Distinct HIV-1 Vpr-Driven Outcomes in Renal Tubule Epithelial Cells

Payne, Emily Harman January 2016 (has links)
<p>Given the emerging epidemic of renal disease in HIV+ patients and the fact that HIV DNA and RNA persist in the kidneys of HIV+ patients despite therapy, it is necessary to understand the role of direct HIV-1 infection of the kidney. HIV-associated kidney disease pathogenesis is attributed in large part to viral proteins. Expression of Vpr in renal tubule epithelial cells (RTECs) induces G2 arrest, apoptosis and polyploidy. The ability of a subset of cells to overcome the G2/M block and progress to polyploidy is not well understood. Polyploidy frequently associates with a bypass of cell death and disease pathogenesis. Given the ability of the kidney to serve as a unique compartment for HIV-1 infection, and the observed occurrence of polyploid cells in HIV+ renal cells, it is critical to understand the mechanisms and consequences of Vpr-induced polyploidy. </p><p>Here I determined effects of HIV-1 Vpr expression in renal cells using highly efficient transduction with VSV.G pseudotyped lentiviral vectors expressing Vpr in the HK2 human tubule epithelial cell line. Using FACS, fluorescence microscopy, and live cell imaging I show that G2 escape immediately precedes a critical junction between two distinct outcomes in Vpr+ RTECs: mitotic cell death and polyploidy. Vpr+ cells that evade aberrant mitosis and become polyploid have a substantially higher survival rate than those that undergo complete mitosis, and this survival correlates with enrichment for polyploidy in cell culture over time. Further, I identify a novel role for ATM kinase in promoting G2 arrest escape and polyploidy in this context. In summary, my work identifies ATM-dependent override of Vpr-mediated G2/M arrest as a critical determinant of cell fate Vpr+ RTECs. Further, our work highlights how a poorly understood HIV mechanism, ploidy increase, may offer insight into key processes of reservoir establishment and disease pathogenesis in HIV+ kidneys.</p> / Dissertation
28

Mathematical modelling of mitotic exit control in budding yeast cell cycle

Freire, P. S. D. S. January 2012 (has links)
The operating principles of complex regulatory networks are more easily understood with mathematical modelling than by intuitive reasoning. In this thesis, I study the dynamics of the mitotic exit control system in budding yeast. I present a comprehensive mathematical model, which provides a system’s-level understanding of the mitotic exit process. This model captures the dynamics of classic experimental situations reported in the literature, and overcomes a number of limitations present in previous models. Analysis of the model led to a number of breakthroughs in the understanding of mitotic exit control. Firstly, numerical analysis of the model quantified the dependence of mitotic exit on the proteolytic and non-proteolytic functions of separase. It was shown that the requirement for the non-proteolytic function of separase depends on cyclin-dependent kinase activity. Secondly, APC/Cdc20 is a critical node that controls the phosphatase (Cdc14) branch and both cyclin (Clb2 and Clb5) branches of the cell cycle regulatory network. Thirdly, the model proved to be a useful tool for the systematic analysis of the recently discovered phenomenon of Cdc14 endocycles. Most proteins belonging to the cell cycle control network are regulated at the level of synthesis, degradation and activity. Presumably, these multiple layers of regulation facilitate robust cell cycle behaviour in the face of genetic and environmental perturbations. To falsify this hypothesis, I subjected the model to global parameter perturbations and tested viability against pre-defined criteria. According to these analyses, the regulated transcription and degradation of proteins make different contributions to cell cycle control. Regulated degradation confers cell cycle oscillations with robustness against perturbations, while regulated transcription plays a major role in controlling the period of these oscillations. Both regulated transcription and degradation are part of important feedback loops, that combined promote robust behaviour in the face of parametric variations.
29

Role of mto2 in temporal and spatial regulation of cytoplasmic microtubule nucleation in Schizosaccharomyces pombe

Groocock, Lynda M. January 2010 (has links)
The microtubule [MT] cytoskeleton of S. pombe is a highly dynamic network of filaments that facilitates intracellular transport, determines cell polarity and plays an essential role in chromosome separation during mitosis. In fission yeast, MTs are nucleated in a temporally and spatially regulated manner from sites called Microtubule Organising Centres [MTOCs], through the activity of both the g-tubulin complex [g-TuC] and the Mto1/2 complex. The Mto1/2 complex determines the localisation of the g-TuC at MTOCs, which change throughout the cell cycle. As cells enter mitosis the cytoplasmic array of MT bundles depolymerise. They are replaced by the intranuclear mitotic spindle and cytoplasmic spindle pole bodyderived astral MTs that in turn give way to the formation of the post-anaphase array. Although much is known about the properties of each type of MT array, the mechanism by which the timing of MT nucleation at different MTOCs is regulated over the cell cycle remains unclear. In the Mto1/2 complex, Mto1 is thought to provide the primary interaction with the g-TuC, and Mto2 functions by reinforcing this interaction. Due to the lack of structural information for the Mto1/2 complex, the molecular mechanism of Mto1/2- mediated assembly of the g-TuC at MTOCs is unknown. The aim of my study is to investigate the possibility that the Mto1/2 complex is able to promote g-TuC assembly by forming a direct template. In addition, I will attempt to determine the molecular role of Mto2 within the Mto1/2 complex and examine ways in which regulation of Mto2 may influence the function the Mto1/2 complex at specific MTOCs. As part of the investigation into the mechanism of Mto2 function, an in vitro analysis of recombinant protein demonstrated that in the absence of Mto1, purified Mto2 is able to self-interact as a tetramer. I have confirmed this interaction in vivo and have also shown that Mto2 forms a dimer as cells enter mitosis. However, in the context of an Mto1/2 complex the significance of the change in Mto2 oligomeric state remains unknown. Hydrodynamic analysis of a truncated form of the Mto1/2 complex suggests that it may form a heterotetramer, a hypothesis which is consistent with the equimolar levels of Mto2 and Mto1 protein within the cell. This information provides some structural insight as to how the Mto1/2 complex may interact with the g-TuC at MTOCs. Further analysis of the Mto1/2 complex revealed that in vivo, the Mto1-Mto2 interaction is disrupted during mitosis. This was found to correlate with the hyperphosphorylation of Mto2, which occurs as cells enter mitosis. Subsequently, an in vitro kinase assay demonstrated that phosphorylation of the Mto1/2 complex reduces the stability of the complex. Mass spectrometry techniques and sequence conservation were used to identify several phosphorylated residues within Mto2 and the ability of these mutants to bind to Mto1 was analysed in vivo and in vitro. In summary, in this study I have uncovered a mechanism which allows fission yeast cells to regulate the nucleation of cytoplasmic MT nucleation in a cell-cycle dependent manner, through a phosphorylation-dependent remodelling of the Mto1/2 complex.
30

Understanding kinetochore dependency pathways using vertebrate conditional knockout cell lines and quantitative proteomics

Wood, Laura Charlotte January 2014 (has links)
When cells divide, a series of events must proceed in a timely and co-ordinated manner to ensure that all DNA is replicated and partitioned equally between the two daughter cells. A central component of this process is the kinetochore, a large proteinaceous complex (>100 proteins) found within the centromere of all chromosomes. During the dynamic process of cell division, this machinery must be able to capture microtubules, promote chromosome movements towards the spindle midzone and ensure that segregration only occurs once this alignment has been successfully completed. This requires intricate mechanical and regulatory co-ordination between components and it is therefore no surprise that the structures responsible are structurally and functionally varied. It has, however, become clear that many kinetochore proteins assemble into distinct sub-complexes and despite the fact that their specific contributions are well studied, the way the many unique sub-assemblies come together to form a fully operational kinetochore is still poorly understood. Here, chromosome isolation techniques from chicken DT40 cells combined with mass spectrometry employing Stable Isotope Labeling by Amino acids in Cell culture (SILAC), is used to compare the proteome of mitotic chromosomes from different conditional kinetochore knockout (KO) cell lines. This includes components of the inner kinetochore; CENP-C, CENP-T and CENP-W, and a sub-unit of the Ndc80 complex that is important for microtubule attachment. With these large data sets I have focused on the impact these depletions have on the architecture of the holo-kinetochore by measuring the SILAC ratios of individual proteins. From these measurements I can define whether specific components are decreased, increased or unchanged in terms of their abundance on chromosomes in response to the various deletions. I have found that proteins within the same complex typically behave in a similar manner across the different KO conditions. By integrating all of the data sets, dependency networks are revealed, as well as highlighting potential novel kinetochore proteins worthy of further study.

Page generated in 0.0406 seconds