• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Lyapunov-type inequality and eigenvalue estimates for fractional problems

Pathak, Nimishaben Shailesh 01 August 2016 (has links)
In this work, we establish the Lyapunov-type inequalities for the fractional boundary value problems with Hilfer derivative for different boundary conditions. We apply this inequality to fractional eigenvalue problems and prove one of the important results of real zeros of certain Mittag-Leffler functions and improve the bound of the eigenvalue using the Cauchy-Schwarz inequality and Semi-maximum norm. We extend it for higher order cases.
2

On dynamic properties of rubber isolators

Sjöberg, Mattias January 2002 (has links)
This work aims at enhancing the understanding and to provideimproved models of the dynamic behavior of rubber vibrationisolators which are widely used in mechanical systems.Initially, a time domainmodel relating compressions tocomponent forces accounting for preload effects, frequency anddynamic amplitude dependence is presented. The problem ofsimultaneously modelling the elastic, viscoelastic and frictionforces are removed by additively splitting them, where theelastic force response is modelled either by a fully linear ora nonlinear shape factor based approach, displaying resultsthat agree with those of a neo-Hookean hyperelastic isolatorunder a long term precompression. The viscoelastic force ismodelled by a fractional derivative element, while the frictionforce governs from a generalized friction element displaying asmoothed Coulomb force. This is a versatile one-dimensionalcomponent model effectively using a small number of parameterswhile exhibiting a good resemblance to measured isolatorcharacteristics. Additionally, the nonlinear excitationeffects on dynamic stiffness and damping of a filled rubberisolator are investigated through measurements. It is shownthat the well-known Payne effect - where stiffness is high forsmall excitation amplitudes and low for large amplitudes whiledamping displays a maximum at intermediate amplitudes -evaluated at a certain frequency, is to a large extentinfluenced by the existence of additional frequency componentsin the signal. Finally, a frequency, temperature and preloaddependent dynamic stiffness model is presented covering theranges from 20 to 20 000 Hz, -50 to +50 °C at 0 to 20 %precompression. A nearly incompressible, thermo-rheologicallysimple material model is adopted displaying viscoelasticitythrough a time - strain separable relaxation tensor with asingle Mittag-Leffler function embodying its time dependence.This fractional derivative based function successfully fitsmaterial properties throughout the whole audible frequencyrange. An extended neo-Hookean strain energy function, beingdirectly proportional to the temperature and density, isapplied for the finite deformation response with componentproperties solved by a nonlinear finite element procedure. Thepresented work is thus believed to enlighten workingconditions’impact on the dynamic properties of rubbervibration isolators, while additionally taking some of thesemost important features into account in the presentedmodels.
3

On dynamic properties of rubber isolators

Sjöberg, Mattias January 2002 (has links)
<p>This work aims at enhancing the understanding and to provideimproved models of the dynamic behavior of rubber vibrationisolators which are widely used in mechanical systems.Initially, a time domainmodel relating compressions tocomponent forces accounting for preload effects, frequency anddynamic amplitude dependence is presented. The problem ofsimultaneously modelling the elastic, viscoelastic and frictionforces are removed by additively splitting them, where theelastic force response is modelled either by a fully linear ora nonlinear shape factor based approach, displaying resultsthat agree with those of a neo-Hookean hyperelastic isolatorunder a long term precompression. The viscoelastic force ismodelled by a fractional derivative element, while the frictionforce governs from a generalized friction element displaying asmoothed Coulomb force. This is a versatile one-dimensionalcomponent model effectively using a small number of parameterswhile exhibiting a good resemblance to measured isolatorcharacteristics. Additionally, the nonlinear excitationeffects on dynamic stiffness and damping of a filled rubberisolator are investigated through measurements. It is shownthat the well-known Payne effect - where stiffness is high forsmall excitation amplitudes and low for large amplitudes whiledamping displays a maximum at intermediate amplitudes -evaluated at a certain frequency, is to a large extentinfluenced by the existence of additional frequency componentsin the signal. Finally, a frequency, temperature and preloaddependent dynamic stiffness model is presented covering theranges from 20 to 20 000 Hz, -50 to +50 °C at 0 to 20 %precompression. A nearly incompressible, thermo-rheologicallysimple material model is adopted displaying viscoelasticitythrough a time - strain separable relaxation tensor with asingle Mittag-Leffler function embodying its time dependence.This fractional derivative based function successfully fitsmaterial properties throughout the whole audible frequencyrange. An extended neo-Hookean strain energy function, beingdirectly proportional to the temperature and density, isapplied for the finite deformation response with componentproperties solved by a nonlinear finite element procedure. Thepresented work is thus believed to enlighten workingconditions’impact on the dynamic properties of rubbervibration isolators, while additionally taking some of thesemost important features into account in the presentedmodels.</p>
4

Controllability and Observability of the Discrete Fractional Linear State-Space Model

Nguyen, Duc M 01 April 2018 (has links)
This thesis aims to investigate the controllability and observability of the discrete fractional linear time-invariant state-space model. First, we will establish key concepts and properties which are the tools necessary for our task. In the third chapter, we will discuss the discrete state-space model and set up the criteria for these two properties. Then, in the fourth chapter, we will attempt to apply these criteria to the discrete fractional model. The general flow of our objectives is as follows: we start with the first-order linear difference equation, move on to the discrete system, then the fractional difference equation, and finally the discrete fractional system. Throughout this process, we will develop the solutions to the (fractional) difference equations, which are the basis of our criteria.
5

Basics of Qualitative Theory of Linear Fractional Difference Equations / Basics of Qualitative Theory of Linear Fractional Difference Equations

Kisela, Tomáš January 2012 (has links)
Tato doktorská práce se zabývá zlomkovým kalkulem na diskrétních množinách, přesněji v rámci takzvaného (q,h)-kalkulu a jeho speciálního případu h-kalkulu. Nejprve jsou položeny základy teorie lineárních zlomkových diferenčních rovnic v (q,h)-kalkulu. Jsou diskutovány některé jejich základní vlastnosti, jako např. existence, jednoznačnost a struktura řešení, a je zavedena diskrétní analogie Mittag-Lefflerovy funkce jako vlastní funkce operátoru zlomkové diference. Dále je v rámci h-kalkulu provedena kvalitativní analýza skalární a vektorové testovací zlomkové diferenční rovnice. Výsledky analýzy stability a asymptotických vlastností umožňují vymezit souvislosti s jinými matematickými disciplínami, např. spojitým zlomkovým kalkulem, Volterrovými diferenčními rovnicemi a numerickou analýzou. Nakonec je nastíněno možné rozšíření zlomkového kalkulu na obecnější časové škály.
6

Uopštena rešenja nekih klasa frakcionih parcijalnih diferencijalnih jednačina / Generalized Solutions for Some Classes of Fractional Partial Diferential Equations

Japundžić Miloš 26 December 2016 (has links)
<p>Doktorska disertacija je posvećena re&scaron;avanju Ko&scaron;ijevog problema odabranih klasa frakcionih diferencijalnih jednačina u okviru Kolomboovih prostora uop&scaron;tenih funkcija. U prvom delu disertacije razmatrane su nehomogene evolucione jednačine sa prostorno frakcionim diferencijalnim operatorima reda 0 &lt; &alpha; &lt; 2 i koeficijentima koji zavise od x i t. Ova klasa jednačina je aproksimativno re&scaron;avana, tako &scaron;to je umesto početne jednačine razmatrana aproksimativna jednačina data preko regularizovanih frakcionih izvoda, odnosno, njihovih regularizovanih množitelja. Za re&scaron;avanje smo koristili dobro poznate uop&scaron;tene uniformno neprekidne polugrupe operatora. U drugom delu disertacije aproksimativno su re&scaron;avane nehomogene frakcione evolucione jednačine sa Kaputovim<br />frakcionim izvodom reda 0 &lt; &alpha; &lt; 2, linearnim, zatvorenim i gusto definisanim<br />operatorom na prostoru Soboljeva celobrojnog reda i koeficijentima koji zavise<br />od x. Odgovarajuća aproksimativna jednačina sadrži uop&scaron;teni operator asociran sa polaznim operatorom, dok su re&scaron;enja dobijena primenom, za tu svrhu&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<br />u disertaciji konstruisanih, uop&scaron;tenih uniformno neprekidnih operatora re&scaron;enja.<br />U oba slučaja ispitivani su uslovi koji obezbeduju egzistenciju i jedinstvenost<br />re&scaron;enja Ko&scaron;ijevog problema na odgovarajućem Kolomboovom prostoru.</p> / <p>Colombeau spaces of generalized functions. In the firs part, we studied inhomogeneous evolution equations with space fractional differential operators of order 0 &lt; &alpha; &lt; 2 and variable coefficients depending on x and t. This class of equations is solved&nbsp; approximately, in such a way that instead of the originate equation we considered the corresponding approximate equation given by regularized fractional derivatives, i.e. their&nbsp; regularized multipliers. In the solving procedure we used a well-known generalized uniformly continuous semigroups of operators. In the second part, we solved approximately inhomogeneous fractional evolution equations with Caputo fractional derivative of order 0 &lt; &alpha; &lt; 2, linear, closed and densely defined operator in Sobolev space of integer order and variable coefficients depending on x. The corresponding approximate equation&nbsp;&nbsp; is a given by the generalized operator associated to the originate&nbsp; operator, while the solutions are obtained by using generalized uniformly continuous solution operators, introduced and developed for that purpose. In both cases, we provided the conditions that ensure the existence and uniqueness solutions of the Cauchy problem in some Colombeau spaces.</p>

Page generated in 0.0925 seconds