Spelling suggestions: "subject:"mixed boundary bonditions."" "subject:"mixed boundary 12onditions.""
1 |
On a Class of Parametrized Domain Optimization Problems with Mixed Boundary Condition TypesLetona Bolivar, Cristina Felicitas 19 October 2016 (has links)
The methods for solving domain optimization problems depends on the case of study. There are methods that have been developed for the discretized problem, but not much is done in the infinite dimensional case. We analyze the theoretical aspects of the infinite dimensional case for a particular domain optimization problem where a portion of the boundary is parametrized, these results involve the existence of the solution to our problem and the calculation of the derivative of the shape functional.
Shape optimization problems have a long history of mathematical study and a wide range of applications. In recent decades there has been an interest in solving these problems with partial differential equation (PDE) constraints. We consider a special class of PDE-constrained shape optimization problems where different boundary condition types (Dirichlet and Neumann) are imposed on the same boundary segment. We also consider the case where the interface between these different boundary condition types may also be parameter dependent. This study also includes special cases where the shape of the region where the PDE is imposed does not change, but the domain of the partial differential operator is parameter dependent, due to the change in boundary condition type. Our treatment centers on the infinite dimensional formulation of the optimization problem. We consider existence of solutions as well as the calculation of derivatives of the associated shape functionals via adjoint solutions. These derivative formulations serve as a starting point for practical numerical approximations. / Ph. D. / Optimization problems arise in a number of areas and are usually posed as finding values of design parameters that minimize a given cost function. Examples include finding the shape of a car or airplane wing to reduce drag and improve fuel economy which maintaining a desired level of performance. This is an example of a constrained optimization problem where the constraint is described by a physical model known as a partial differential equation (PDE). For shape optimization problems, we want to find the best shape to minimizes a certain cost function, and the cost depends on the shape through the solution to the PDE. The strategy for solving a shape optimization problem depends on the particular problem at hand. In many cases, one assumes that the solution of an optimization problem exists, so the development of methods to find or approximate possible solutions is the first step. In this dissertation, we study some theoretical aspects of the problem that can be used to guarantee the existence of an optimal (or locally optimal) solution to the problem. We focus our attention on a special class of PDE constraints where the cost function is calculated over a domain with an unknown portion that needs to be determined. We further consider a special case of boundary conditions for the PDE constraints known as mixed boundary conditions. In this work, we study the theoretical aspects to guarantee the existence of a solution, and then we provide formulations of the derivatives that permit algorithms to search for the shape of the domain that minimizes a given cost function. These formulations are important to develop efficient numerical approximations.
|
2 |
Steady States and Stability of the Bistable Reaction-Diffusion Equation on Bounded IntervalsCouture, Chad January 2018 (has links)
Reaction-diffusion equations have been used to study various phenomena across different fields. These equations can be posed on the whole real line, or on a subinterval, depending on the situation being studied. For finite intervals, we also impose diverse boundary conditions on the system. In the present thesis, we solely focus on the bistable reaction-diffusion equation while working on a bounded interval of the form $[0,L]$ ($L>0$). Furthermore, we consider both mixed and no-flux boundary conditions, where we extend the former to Dirichlet boundary conditions once our analysis of that system is complete. We first use phase-plane analysis to set up our initial investigation of both systems. This gives us an integral describing the transit time of orbits within the phase-plane. This allows us to determine the bifurcation diagram of both systems. We then transform the integral to ease numerical calculations. Finally, we determine the stability of the steady states of each system.
|
3 |
Bifurkace obyčejných diferenciálních rovnic z bodů Fučíkova spektra / Bifurcation of ordinary differential equations from points of Fučík spektrumExnerová, Vendula January 2011 (has links)
Title: Bifurcation of Ordinary Differential Equations from Points of Fučík Spectrum Author: Vendula Exnerová Department: Department of Mathematical Analysis Supervisor: doc. RNDr. Jana Stará, CSc., Department of Mathematical Analysis MFF UK, Prague Abstract: The main subject of the thesis is the Fučík spectrum of a system of two differential equations of the second order with mixed boundary conditions. In the first part of the thesis there are described Fučík spectra of problems of a differential equation with Dirichlet, mixed and Neumann boundary conditions. The other part deals with systems of two differential equations. It attends to basic properties of systems and their nontrivial solutions, to a possibility of a reduction of number of parameters and to a dependance of a problem with mixed boundary condition on one with Dirichlet boundary conditions. The thesis takes up the results of E. Massa and B. Ruff about the Dirichlet problem and improves some of their proofs. In the end the Fučík spectrum of a problem with mixed boundary conditions is described as the union of countably many continuously differentiable surfaces and there is proven that this spectrum is closed.
|
4 |
A compactness result for the div-curl system with inhomogeneous mixed boundary conditions for bounded Lipschitz domains and some applicationsPauly, Dirk, Skrepek, Nathanael 04 June 2024 (has links)
For a bounded Lipschitz domain with Lipschitz interface we show the following compactness theorem: Any L2-bounded sequence of vector fields with L2-bounded rotations and L2-bounded divergences as well as L2-bounded tangential traces on one part of the boundary and L2-bounded normal traces on the other part of the boundary, contains a strongly L2-convergent subsequence. This generalises recent results for homogeneous mixed boundary conditions in Bauer et al. (SIAM J Math Anal 48(4):2912-2943, 2016) Bauer et al. (in: Maxwell’s Equations: Analysis and Numerics (Radon Series on Computational and Applied Mathematics 24), De Gruyter, pp. 77-104, 2019). As applications we present a related Friedrichs/Poincaré type estimate, a div-curl lemma, and show that the Maxwell operator with mixed tangential and impedance boundary conditions (Robin type boundary conditions) has compact resolvents.
|
5 |
Multiscale Continuum Modeling of Piezoelectric Smart StructuresErnesto Camarena (5929553) 10 June 2019 (has links)
Among the many active materials in use today, piezoelectric composite patches have enabled notable advances in emerging technologies such as disturbance sensing, control of flexible structures, and energy harvesting. The macro fiber composite (MFC), in particular, is well known for its outstanding performance. Multiscale models are typically required for smart-structure design with MFCs. This is due to the need for predicting the macroscopic response (such as tip deflection under a transverse load or applied voltage) while accounting for the fact that the MFC has microscale details. Current multiscale models of the MFC exclusively focus on predicting the macroscopic response with homogenized material properties. There are a limited number of homogenized properties available from physical experiments and various aspects of existing homogenization techniques for the MFC are shown here to be inadequate. Thus, new homogenized models of the MFC are proposed to improve smart-structure predictions and therefore improve device design. It is notable that current multiscale modeling efforts for MFCs are incomplete since, after homogenization, the local fields such as stresses and electric fields have not been recovered. Existing methods for obtaining local fields are not applicable since the electrodes of the MFC are embedded among passive layers. Therefore, another objective of this work was to find the local fields of the MFC without having the computational burden of fully modeling the microscopic features of the MFC over a macroscale area. This should enable smart-structure designs with improved reliability because failure studies of MFCs will be enabled. Large-scale 3D finite element (FE) models that included microscale features were constructed throughout this work to verify the multiscale methodologies. Note that after creating a free account on cdmhub.org, many files used to create the results in this work can be downloaded from https://cdmhub.org/projects/ernestocamarena.<br><br>First, the Mechanics of Structure Genome (MSG) was extended to provide a rigorous analytical homogenization method. The MFC was idealized to consist of a stack of homogeneous layers where some of the layers were homogenized with existing rules of mixtures. For the analytical model, the electrical behavior caused by the interdigitated electrodes (IDEs) was approximated with uniform poling and uniform electrodes. All other assumptions on the field variables were avoided; thus an exact solution for a stack of homogeneous layers was found with MSG. In doing so, it was proved that in any such multi-layered composite, the in-plane strains and the transverse stresses are equal in each layer and the in-plane electric fields and transverse electric displacement are constant between the electrodes. Using this knowledge, a hybrid rule of mixtures was developed to homogenize the entire MFC layup so as to obtain the complete set of effective device properties. Since various assumptions were avoided and since the property set is now complete, it is expected that greater energy equivalence between reality and the homogenized model has been made possible. The derivation clarified what the electrical behavior of a homogenized solid with internal electrodes should be—an issue that has not been well understood. The behavior was verified by large-scale FE models of an isolated MFC patch.<br> <br>Increased geometrical fidelity for homogenization was achieved with an FE-based RVE analysis that accounted for finite-thickness effects. The presented theory also rectifies numerous issues in the literature with the use of the periodic boundary conditions. The procedure was first developed without regard to the internal electrodes (ie a homogenization of the active layer). At this level, the boundary conditions were shown to satisfy a piezoelectric macrohomogeneity condition. The methodology was then applied to the full MFC layup, and modifications were implemented so that both types of MFC electrodes would be accounted for. The IDE case considered nonuniform poling and electric fields, but fully poled material was assumed. The inherent challenges associated with these nonuniformities are explored, and a solution is proposed. Based on the homogenization boundary conditions, a dehomogenization procedure was proposed that enables the recovery of local fields. The RVE analysis results for the effective properties revealed that the homogenization procedure yields an unsymmetric constitutive relation; which suggests that the MFC cannot be homogenized as rigorously as expected. Nonetheless, the obtained properties were verified to yield favorable results when compared to a large-scale 3D FE model.<br> <br>As a final test of the obtained effective properties, large-scale 3D FE models of MFCs acting in a static unimorph configuration were considered. The most critical case to test was the smallest MFC available. Since none of the homogenized models account for the passive MFC regions that surround the piezoelectric fiber array, some of the test models were constructed with and without the passive regions. Studying the deflection of the host substrate revealed that ignoring the passive area in smaller MFCs can overpredict the response by up to 20%. Satisfactory agreement between the homogenized models and a direct numerical simulation were obtained with a larger MFC (about a 5% difference for the tip deflection). Furthermore, the uniform polarization assumption (in the analytical model) for the IDE case was found to be inadequate. Lastly, the recovery of the local fields was found to need improvement.<br><br><br>
|
6 |
Optimal Control of ThermoviscoplasticityStötzner, Ailyn 09 November 2018 (has links)
This thesis is devoted to the study of optimal control problems governed by a quasistatic, thermoviscoplastic model at small strains with linear kinematic hardening, von Mises yield condition and mixed boundary conditions. Mathematically, the thermoviscoplastic equations are given by nonlinear partial differential equations and a variational inequality of second kind in order to represent the elastic, plastic and thermal effects.
Taking into account thermal effects we have to handle numerous mathematical challenges during the analysis of the thermoviscoplastic model, mainly due to the low integrability of the nonlinear terms on the right-hand side of the heat equation. One of our main results is the existence of a unique weak solution, which is proved by means of a fixed-point argument and by employing maximal parabolic regularity theory. Furthermore, we define the related control-to-state mapping and investigate properties of this mapping such as boundedness, weak continuity and local Lipschitz continuity. Another major result is the finding that the mapping is Hadamard differentiable; a main ingredient is the reformulation of the variational inequality, the so called viscoplastic flow rule, as a Banach space-valued ordinary differential equation with non-differentiable right-hand side. Subsequently, we consider an optimal control problem governed by thermoviscoplasticity and show the existence of a minimizer. Finally, close this thesis with numerical examples. / Diese Arbeit ist der Untersuchung von Optimalsteuerproblemen gewidmet, denen ein quasistatisches, thermoviskoplastisches Model mit kleinen Deformationen, mit linearem kinematischen Hardening, von Mises Fließbedingung und gemischten Randbedingungen zu Grunde liegt. Mathematisch werden thermoviskoplastische Systeme durch nichtlineare partielle Differentialgleichungen und eine variationelle Ungleichung der zweiten Art beschrieben, um die elastischen, plastischen und thermischen Effekte abzubilden.
Durch die Miteinbeziehung thermischer Effekte, treten verschiedene mathematische Schwierigkeiten während der Analysis des thermoviskoplastischen Systems auf, die ihren Ursprung hauptsächlich in der schlechten Regularität der nichtlinearen Terme auf der rechten Seite der Wärmeleitungsgleichung haben. Eines unserer Hauptresultate ist die Existenz einer eindeutigen schwachen Lösung, welches wir mit Hilfe von einem Fixpunktargument und unter Anwendung von maximaler parabolischer Regularitätstheorie beweisen. Zudem definieren wir die entsprechende Steuerungs-Zustands-Abbildung und untersuchen Eigenschaften dieser Abbildung wie die Beschränktheit, schwache Stetigkeit und lokale Lipschitz Stetigkeit. Ein weiteres wichtiges Resultat ist, dass die Abbildung Hadamard differenzierbar ist; Hauptbestandteil des Beweises ist die Umformulierung der variationellen Ungleichung, der sogenannten viskoplastischen Fließregel, als eine Banachraum-wertige gewöhnliche Differentialgleichung mit nichtdifferenzierbarer rechter Seite. Schließlich runden wir diese Arbeit mit numerischen Beispielen ab.
|
Page generated in 0.1045 seconds