• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mixed Reality Tailored to the Visually-Impaired

Omary, Danah M 08 1900 (has links)
The goal of the proposed device and software architecture is to apply the functionality of mixed reality (MR) in order to make a virtual environment that is more accessible to the visually-impaired. We propose a glove-based system for MR that will use finger and hand movement tracking along with tactile feedback so that the visually-impaired can interact with and obtain a more detailed sense of virtual objects and potentially even virtual environments. The software architecture makes current MR frameworks more accessible by augmenting the existing software and extensive 3D model libraries with both the interfacing of the glove-based system and the audibly navigable user interface (UI) of a virtual environment we have developed. We implemented a circuit with finger flexion/extension tracking for all 5 fingers of a single hand and variable vibration intensities for the vibromotors on all 5 fingertips of a single hand. The virtual environment can be hosted on a Windows 10 application. The virtual hand and its fingers can be moved with the system's input and the virtual fingertips touching the virtual objects trigger vibration motors (vibromotors) to vibrate while the virtual objects are being touched. A rudimentary implementation of picking up and moving virtual objects inside the virtual environment is also implemented. In addition to the vibromotor responses, text to speech (TTS) is also implemented in the application for when virtual fingertips touch virtual objects and other relevant events in the virtual environment.
2

Erick_Borders_MSET-Thesis_December-2022.pdf

Erick Samuel Borders (14272778) 20 December 2022 (has links)
<p>Fluid power education would benefit from the adoption of an alternative to traditional hands-on instructional methods. Hands-on education is invaluable because it offers students experience interacting with and controlling fluid power systems and components, but systems are typically space-consuming and expensive. The study sought to prove the viability of mixed reality (MR) as an alternative to traditional hands-on fluid power instruction through the creation of MR lab exercises. A summary of design methodology was created to demonstrate how virtual fluid power components were modeled and presented in a mixed reality environment. Data was collected from students enrolled at Purdue University who participated in traditional and mixed reality fluid power lab exercises. Student responses were expected to express a positive reception of mixed reality as a fluid power instructional tool. The study anticipated that utilizing mixed reality in a fluid power laboratory setting would increase student comprehension of fluid power concepts. Educational variables were limited by restricting testing to students within the advanced fluid power course of Purdue University’s Polytechnic Institute. Students in this course provided feedback that drew comparisons between traditional and mixed reality instructional methods. Labs were created to remain within the course schedule so as not to disrupt course curriculum. Data from Likert-type surveys were analyzed from pre- and post-lab questionnaires as well as student feedback from their experience after completing each mixed reality (MR) lab. Analysis showed that MR is a viable alternative to traditional hands-on instructional methods as students showed an increase in material comprehension of both fluid power components and concepts. Students perceived MR as a beneficial instructional tool but continued to show preference towards physical interactions with components. A combination of instructional methods is recommended.</p> <p>  </p>
3

The potential of mixed reality application in robot condition monitoring : A literature review

Mengstu, Meseret Gashaw January 2023 (has links)
In the context of Industry 4.0, the prominence of robotics has grown significantly, leading to a pressing need for advanced monitoring techniques. This thesis explores the potential role of Mixed Reality (MR) in robot condition monitoring through an exhaustive literature review of 138 selected studies. The investigation showed prevalent methods in robot condition monitoring, such as Fault Detection and Diagnosis, Machine Learning Techniques, Signal-based Monitoring, Model-based Monitoring, and Real-time Monitoring. MR, while not yet abundant in this context, is emerging as a promising tool, especially for real-time data visualization, remote maintenance, and integration with other technologies. By visually representing data and predictions directly on the robot, MR can speed up the diagnostic process, improve safety, and promote remote collaboration. However, challenges such as integration with legacy systems, effective data management, and hardware limitations were identified. The research also observed trends, benefits, and challenges in the broader application of MR in industrial settings. While MR offers significant advantages, including enhanced visualization, improved efficiency, and cost savings, its full integration into the world of robot condition monitoring necessitates further research and iterative refinement. In essence, this thesis presents a balanced overview of the potential and challenges of MR in robot condition monitoring, setting the stage for future exploration in this burgeoning domain.
4

Mixed Reality Assistenzsystem zur visuellen Qualitätsprüfung mit Hilfe digitaler Produktfertigungsinformationen

Adwernat, Stefan, Neges, Matthias 06 January 2020 (has links)
In der industriellen Fertigung unterliegen die Produkteigenschaften und -parameter, unabhängig vom eingesetzten Fertigungsverfahren, gewissen Streuungen. Im Rahmen der Qualitätsprüfung wird daher ermittelt, inwieweit die festgelegten Qualitätsanforderungen an das Produkt bzw. Werkstück trotz der Fertigungsstreuungen erfüllt werden (Brunner et al. 2011) [...] Insbesondere bei einer visuellen Prüfung durch den Menschen hängt das Ergebnis jedoch sehr stark vom jeweiligen Prüfwerker ab. Die wesentlichen Faktoren für die Erkennungsleistung sind Erfahrung, Qualifizierung und Ermüdung des Prüfers, Umgebungsbedingungen, wie Beleuchtung, Schmutz oder akustische Störfaktoren, aber auch die Anzahl und Gewichtung der zu bewertenden Merkmale (Keferstein et al. 2018). Infolge dessen kann die Zuverlässigkeit und Reproduzierbarkeit der Prüfergebnisse negativ beeinflusst werden. Gleiches gilt für die vollständige und konsistente Dokumentation der Sichtprüfung [...] Vor diesem Hintergrund wird ein Mixed Reality-basiertes Assistenzsystem entwickelt, welches den Prüfwerker bei der Durchführung und Dokumentation der visuellen Sichtprüfung unterstützen soll. Die Anforderungen dieses Ansatzes sind aus einem Kooperationsprojekt in der Automobilindustrie abgeleitet. Das dargestellte Assistenzsystem ist daher Teil von übergeordneten Aktivitäten im Zusammenhang mit 3D-Master und einer zeichnungsfreien Produktdokumentation. [...aus der Einleitung]
5

Holographic Sign Language Interpreter: A User Interaction Study within Mixed Reality Classroom

Fu Chia Yang (12469872) 27 April 2023 (has links)
<p>An application was developed to explore user interactions with the holographic sign language interpreters within HoloLens MR classrooms for Deaf and Hard of Hearing (DHH) students. The proposed system aims to enhance DHH students’ learning efficacy. Despite the ongoing advancement of assistive technology and the trend to adopt Mixed Reality applications into education, not much existing research provides user study or design guidelines for HoloLens development targeting the DHH community. The developed HoloLens application projects a holographic American Sign Language (ASL) avatar that signs the lecture while a speaking instructor is teaching. The usability test focused on avatar manipulation (move, rotate, and resize) and avatar framing (full-body and half-body displays) within the MR classroom. A mixed-method approach was used to analyze quantitative and qualitative data through test recordings, surveys, and interviews. The result shows user preferences toward viewing holographic signing avatars in the MR space and user acceptability toward such applications</p>
6

Rapid Design and Prototyping Methods for Mobile Head-Worn Mixed Reality (MR) Interface and Interaction Systems

Redfearn, Brady Edwin 09 February 2018 (has links)
As Mixed Reality (MR) technologies become more prevalent, it is important for researchers to design and prototype the kinds of user interface and user interactions that are most effective for end-user consumers. Creating these standards now will aid in technology development and adoption in MR overall. In the current climate of this domain, however, the interface elements and user interaction styles are unique to each hardware and software vendor and are generally proprietary in nature. This results in confusion for consumers. To explore the MR interface and interaction space, this research employed a series of standard user-centered design (UCD) methods to rapidly prototype 3D head-worn display (HWD) systems in the first responder domain. These methods were performed across a series of 13 experiments, resulting in an in-depth analysis of the most effective methods experienced herein and providing suggested paths forward for future researchers in 3D MR HWD systems. Lessons learned from each individual method and across all of the experiments are shared. Several characteristics are defined and described as they relate to each experiment, including interface, interaction, and cost. / Ph. D. / Trends in technology development have shown that the inclusion of virtualized objects and worlds will become more popular in both professional workflows and personal entertainment. As these synthetic objects become easier to build and deploy in consumer devices, it will become increasingly important for a set of standard information elements (e.g., the “save” operation disk icon in desktop software) and user interaction motifs (e.g., “pinch and zoom” on touch screen interfaces) to be deployed in these types of futuristic technologies. This research effort explores a series of rapid design and prototype methods that inform how a selection of common interface elements in the first responder domain should be communicated to the user. It also explores how users in this domain prefer to interact with futuristic technology systems. The results from this study are analyzed across a series of characteristics and suggestions are made on the most effective methods and experiments that should be used by future researchers in this domain.

Page generated in 0.0699 seconds