Spelling suggestions: "subject:"dialogflow"" "subject:"bondflow""
1 |
High Pressure Ratio Compressor Performance Design and OptimizationNaber, Logan A. 04 October 2021 (has links)
No description available.
|
2 |
Establishing the Physical Basis for Calcification by Amorphous PathwaysBlue, Christina R. 28 May 2014 (has links)
The scientific community is undergoing a paradigm shift with the realization that the formation of carbonate minerals with diverse compositions and textures can be understood within the framework of multiple pathways to mineralization. A variety of common minerals can form via an amorphous pathway, where molecules or clusters aggregate to form a metastable amorphous phase that later transforms to one or more crystalline polymorphs. Amorphous calcium carbonate (ACC) is now recognized in a wide variety of natural environments. Recent studies indicate the chemical signatures and properties of the carbonate polymorphs that transform from an ACC pathway may obey a different set of dependencies than those established for the "classical" step-growth process. The Mg content of ACC and calcite is of particular interest as a minor element that is frequently found in ACC and the final crystalline products of calcified skeletons or sediments at significant concentrations. Previous studies of ACC have provided important insights into ACC properties, but a quantitative understanding of the controls on ACC composition and the effect of mineralization pathway on Mg signatures in calcite has not been established.
This study utilized a new mixed-flow reactor (MFR) procedure to synthesize ACC from well-characterized solutions that maintain a constant supersaturation. The experimental design controlled the input solution Mg/Ca ratio, total carbonate concentration, and pH to produce ACC with systematic chemical compositions. Results show that ACC composition is regulated by the interplay of three factors at steady state conditions: 1) Mg/Ca ratio, 2) total carbonate concentration, and 3) solution pH. Findings from transformation experiments show a systematic and predictable chemical framework for understanding polymorph selection during ACC transformation. Furthermore, results suggest a chemical basis for a broad range of Mg contents in calcite, including high Mg calcite. We find that the final calcite produced from ACC is similar to the composition of the initial ACC phase, suggesting that calcite composition reflects local conditions of formation, regardless of the pathway to mineralization. The findings from this study provide a chemical road map to future studies on ACC composition, ACC transformation, polymorph selection, and impurities in calcite. / Ph. D.
|
3 |
Návrh turbínové skříně pro diagonální turbínové kolo / Design of the turbine housing for diagonal turbine wheelPřibyl, Zdeněk January 2015 (has links)
The aim of this thesis is to focus on an application of mixed flow turbine wheel for charging diesel powered combustion engine in a van and to give a summary about current technologies used for charging internal combustion engines. Output of this thesis should be a package study with a few design layouts for the application mentioned above, including models prepared for rapid prototyping. Another part of the package study is a simulation of thermal stress and final deformation of turbine heat shroud. Design layout should contain as many production parts as possible.
|
4 |
Návrh turbínové skříně pro diagonální turbínové kolo / Design of Turbine Housing for Diagonal Turbine WheelGrygařík, Václav January 2016 (has links)
This thesis is focused on design of the turbine housing CAD model applicable for mixed flow turbine. It also deals with strength analysis of designed turbine housing. The aim of the thesis is to create a three-dimensional turbine housing model accompanied by drawings.
|
5 |
TWO-DIMENSIONAL HYDRODYNAMIC MODELING OF TWO-PHASE FLOW FOR UNDERSTANDING GEYSER PHENOMENA IN URBAN STORMWATER SYSTEMShao, Zhiyu S. 01 January 2013 (has links)
During intense rain events a stormwater system can fill rapidly and undergo a transition from open channel flow to pressurized flow. This transition can create large discrete pockets of trapped air in the system. These pockets are pressurized in the horizontal reaches of the system and then are released through vertical vents. In extreme cases, the transition and release of air pockets can create a geyser feature.
The current models are inadequate for simulating mixed flows with complicated air-water interactions, such as geysers. Additionally, the simulation of air escaping in the vertical dropshaft is greatly simplified, or completely ignored, in the existing models.
In this work a two-phase numerical model solving the Navier-Stokes equations is developed to investigate the key factors that form geysers. A projection method is used to solve the Navier-Stokes Equation. An advanced two-phase flow model, Volume of Fluid (VOF), is implemented in the Navier-Stokes solver to capture and advance the interface.
This model has been validated with standard two-phase flow test problems that involve significant interface topology changes, air entrainment and violent free surface motion. The results demonstrate the capability of handling complicated two-phase interactions. The numerical results are compared with experimental data and theoretical solutions. The comparisons consistently show satisfactory performance of the model.
The model is applied to a real stormwater system and accurately simulates the pressurization process in a horizontal channel. The two-phase model is applied to simulate air pockets rising and release motion in a vertical riser. The numerical model demonstrates the dominant factors that contribute to geyser formation, including air pocket size, pressurization of main pipe and surcharged state in the vertical riser. It captures the key dynamics of two-phase flow in the vertical riser, consistent with experimental results, suggesting that the code has an excellent potential of extending its use to practical applications.
|
6 |
Design Improvements On Mixed Flow Pumps By Means Of Computational Fluid DynamicsOzgen, Onur 01 December 2006 (has links) (PDF)
The demand on high efficiency pumps leads the manufacturers to develop new design and manufacturing techniques for rotodynamic pumps. Computational Fluid
Dynamics (CFD) software are started to be used during the design periods for this reason in order to validate the designs before the pumps are produced. However the integration process of CFD software into the design procedure should be made carefully in order to improve the designs.
In this thesis, the CFD software is aimed to be integrated into the pump design procedure. In this frame, a vertical turbine type mixed flow pump is aimed to be designed and design improvements are intended to be made by applying numerical
experimentations on the pump. The pump that is designed in this study can deliver 115 l/s flow rate against the head of 16 mWC in 2900 rpm. The effects of various parameters in the design are investigated by the help of CFD software during the
design and best performance characteristics of the pump are aimed to be reached.
The pump that is designed in this study is manufactured and tested in Layne Bowler Pumps Company Inc. The design point of the pump is reached within the tolerance limits given in the related standard.
In addition, the results of actual test and numerical experimentation are compared and found to be in agreement with each other. The integration of CFD code to the design procedure is found quite useful by means of shortening design periods, lowering manufacturing and testing costs. In deed the effects of the design parameters are understood better by applying numerical experimentations to the designed pump.
|
7 |
Design And Performance Evaluation Of Mixed Flow Pumps By Numerical Experimentation And Axial Thrust InvestigationCirit, Ali 01 October 2007 (has links) (PDF)
In this thesis a vertical turbine mixed flow pump that has a flow rate of 40 l/s and 16 mwc head at 2900 rpm is designed. Effect of design parameters are investigated and flow inside the pump is analyzed with the help of numerical experimentations. The designed pump is manufactured and tested in Layne Bowler Pumps Company and completed in TÜ / BiTAK - TEYDEB project. Pump is designed in the tolerance limits that are defined in the standard TS EN ISO 9906. Numerical experimentation results for performance charecteristics show the same trend with the test results.
In addition, axial thrust measurements are done on the designed pump with using load cells. Effect of balancing holes and balancing ring are investigated. Balancing holes are drilled at various diameters at the back side of the impellers and its effect is analyzed on the pump performance characteristics. Test results are compared with different approaches.
|
8 |
Desifn And Optimization Of A Mixed Flow Compressor Impeller Using Robust Design MethodsCevik, Mert 01 September 2009 (has links) (PDF)
This is a study that is focused on developing an individual design methodology for a centrifugal impeller and generating a mixed flow impeller for a small turbojet engine by using this methodology. The structure of the methodology is based on the design, modeling and the optimization processes, which are operated sequentially. The design process consists of
engine design and compressor design codes operated together with a commercial design code. Design of Experiment methods and an in-house Neural Network code is used for the modeling phase. The optimization is based on an in-house code which is generated based on multidirectional search algorithm. The optimization problem is constructed by using the inhouse parametric design codes of the engine and the compressor. The goal of the optimization problem is to reach an optimum design which gives the best possible combination of the thrust and the fuel consumption for a small turbojet engine.
The final combination of the design parameters obtained from the optimization study are used in order to generate the final design with the commercial design code. On the last part of the thesis a comparison of the final design and a standard radial flow impeller is made in order to clarify the benefit of the study. The results have been showed that a mixed flow
compressor design is superior to a standard radial flow compressor in a small turbojet application.
|
9 |
Modélisation et simulation d'écoulements transitoires diphasiques eau-air dans les circuits hydrauliques / Modelling and simulation of transient air-water two-phase flows in hydraulic pipesDemay, Charles 15 November 2017 (has links)
Ce travail est consacré à la modélisation mathématique et numérique des écoulements eau-air en conduite qui interviennent notamment dans les centrales de production d’électricité ou les réseaux d’eaux usées. On s’intéresse particulièrement aux écoulements mixtes caractérisés par la présence de régimes stratifiés pilotés par des ondes gravitaires lentes, de régimes en charge ou secs (conduite remplie d’eau ou d’air) pilotés par des ondes acoustiques rapides, et de poches d’air piégées. Une modélisation précise de ces écoulements est nécessaire afin de garantir le bon fonctionnement du circuit hydraulique sous-jacent. Alors que la plupart des modèles disponibles dans la littérature se concentrent sur la phase eau en négligeant la présence de l’air, un modèle bicouche compressible prenant en compte les interactions eau-air est proposé dans cette thèse. Sa construction réside dans l’intégration des équations d’Euler barotropes sur la hauteur de chaque phase et dans l’application de la contrainte hydrostatique sur le gradient de pression de l’eau. Le modèle obtenu est hyperbolique et satisfait une inégalité d’entropie en plus d’autres propriétés mathématiques notables, telles que l’unicité des relations de saut ou la positivité des hauteurs et densités de chaque phase. Au niveau discret, la simulation d’écoulements mixtes avec le modèle bicouche compressible soulève plusieurs défis en raison de la disparité des vitesses d’ondes caractérisant chaque régime, des processus de relaxation rapide sous-jacents, et de la disparition de l’une des phases dans les régimes en charge ou sec. Une méthode à pas fractionnaires implicite-explicite est alors développée en s’appuyant sur la relaxation rapide en pression et sur le mimétisme avec les équations de Saint-Venant pour la dynamique lente de la phase eau. En particulier, une approche par relaxation permet d’obtenir une stabilisation du schéma en fonction du régime d’écoulement. Plusieurs cas tests sont traités et démontrent la capacité du modèle proposé à gérer des écoulements mixtes incluant la présence de poches d’air piégées. / The present work is dedicated to the mathematical and numerical modelling of transient air-water flows in pipes which occur in piping systems of several industrial areas such as nuclear or hydroelectric power plants or sewage pipelines. It deals more specifically with the so-called mixed flows which involve stratified regimes driven by slow gravity waves, pressurized or dry regimes (pipe full of water or air) driven by fast acoustic waves and entrapped air pockets. An accurate modelling of these flows is necessary to guarantee the operability of the related hydraulic system. While most of available models in the literature focus on the water phase neglecting the air phase, a compressible two-layer model which accounts for air-water interactions is proposed herein. The derivation process relies on a depth averaging of the isentropic Euler set of equations for both phases where the hydrostatic constraint is applied on the water pressure gradient. The resulting system is hyperbolic and satisfies an entropy inequality in addition to other significant mathematical properties, including the uniqueness of jump conditions and the positivity of heights and densities for each layer. Regarding the discrete level, the simulation of mixed flows with the compressible two-layer model raises key challenges due to the discrepancy of wave speeds characterizing each regime combined with the fast underlying relaxation processes and with phase vanishing when the flow becomes pressurized or dry. Thus, an implicit-explicit fractional step method is derived. It relies on the fast pressure relaxation in addition to a mimetic approach with the shallow water equations for the slow dynamics of the water phase. In particular, a relaxation method provides stabilization terms activated according to the flow regime. Several test cases are performed and attest the ability of the compressible two-layer model to deal with mixed flows in pipes involving air pocket entrapment.
|
Page generated in 0.0328 seconds