Spelling suggestions: "subject:"amobile objects"" "subject:"0mobile objects""
1 |
Détection et suivi d'objets mobiles perçus depuis un capteur visuel embarquéAlmanza-Ojeda, Dora Luz 07 January 2011 (has links) (PDF)
Cette thèse traite de la détection et du suivi d'objets mobiles dans un environnement dynamique, en utilisant une caméra embarquée sur un robot mobile. Ce sujet représente encore un défi important car on exploite uniquement la vision mono-caméra pour le résoudre. Nous devons détecter les objets mobiles dans la scène par une analyse de leurs déplacements apparents dans les images, en excluant le mouvement propre de la caméra. Dans une première étape, nous proposons une analyse spatio-temporelle de la séquence d'images, sur la base du flot optique épars. La méthode de clustering a contrario permet le groupement des points dynamiques, sans information a priori sur le nombre de groupes à former et sans réglage de paramètres. La réussite de cette méthode réside dans une accumulation suffisante des données pour bien caractériser la position et la vitesse des points. Nous appelons temps de pistage, le temps nécessaire pour acquérir les images analysées pour bien caractériser les points. Nous avons développé une carte probabiliste afin de trouver les zones dans l'image qui ont les probabilités la plus grandes de contenir un objet mobile. Cette carte permet la sélection active de nouveaux points près des régions détectées précédemment en permettant d'élargir la taille de ces régions. Dans la deuxième étape nous mettons en oeuvre une approche itérative pour exécuter détection, clustering et suivi sur des séquences d'images acquises depuis une caméra fixe en intérieur et en extérieur. Un objet est représenté par un contour actif qui est mis à jour de sorte que le modèle initial reste à l'intérieur du contour. Finalement nous présentons des résultats expérimentaux sur des images acquises depuis une caméra embarquée sur un robot mobile se déplaçant dans un environnement extérieur avec des objets mobiles rigides et nonrigides. Nous montrons que la méthode est utilisable pour détecter des obstacles pendant la navigation dans un environnement inconnu a priori, d'abord pour des faibles vitesses, puis pour des vitesses plus réalistes après compensation du mouvement propre du robot dans les images.
|
2 |
Détection, localisation et suivi des obstacles et objets mobiles à partir d'une plate forme de stéréo-vision / Detection, localisation and tracking of obstacles and moving objects, from a stereovision setupLefaudeux, Benjamin 30 September 2013 (has links)
Cette thèse s'inscrit dans la problématique de la perception des véhicules autonomes, qui doivent notamment être capables de détecter et de positionner à tout moment les éléments fixes et mobiles de leur environnement. Les besoins sont ensuite multiples, de la détection d'obstacles à la localisation du porteur dans l'espace, et de nombreuses méthodes de la littérature s'y attellent. L'objectif de cette thèse est de reconstituer, à partir de prises de vues de stéréo-vision, une carte en trois dimensions décrivant l'environnement proche ; tout en effectuant une détection, localisation et suivi dans le temps des objets mobiles.La détection et le suivi dans le temps d'un grand nombre de points d'intérêt constitue une première étape. Après avoir effectué une comparaison exhaustive de divers détecteurs de points d'intérêt de la littérature, on propose pour réaliser le suivi de points une implémentation massivement parallélisée de l'algorithme KLT, dans une configuration redondante réalisée pendant cette thèse. Cette implémentation autorise le suivi fiable de milliers de points en temps réel, et se compare favorablement à l'état de l'art.Il s'agit ensuite d'estimer le déplacement du porteur, et de positionner ces points dans l'espace, tâche pour laquelle on propose une évolution robuste d'une procédure bien connue, dite "SVD", suivie d'un filtrage par UKF, qui nous permettent d'estimer très rapidement le mouvement propre du porteur. Les points suivis sont ensuite positionnés dans l'espace, en prenant en compte leur possible mobilité, en estimant continuellement la position la plus probable compte tenu des observations successives.La détection et le suivi des objets mobiles font l'objet d'une dernière partie, dans laquelle on propose une segmentation originale tenant compte des aspects de position et de vitesse. On exploite ainsi une des singularités de notre approche, qui conserve pour chaque point positionné un ensemble cohérent de positions dans le temps. Le filtrage et le suivi des cibles se basent finalement sur un filtre GM-PHD. / This PhD work is to be seen within the context of autonomous vehicle perception, in which the detection and localisation of elements of the surroundings in real time is an obvious requirement. Subsequent perception needs are manyfold, from localisation to obstacle detection, and are the subject of a continued research interest. The goal of this work is to build, in real time and from stereovision acquisition, a 3D map of the surroundings ; while detecting and tracking moving objects.Interest point selection and tracking on picture space are a first step, which we initiate by a thorough comparison of detectors from the literature. As regards tracking, we propose a massively parallel implementation of the standard KLT algorithm, using redundant tracking to provide reliable quality estimation. This allows us to track thousands of points in real-time, which compares favourably to the state of the art.Next step is the ego-motion estimation, along with the positioning of tracked points in 3D space. We first propose an iterative variant of the well known “SVD” process followed by UKF filtering, which allows for a very fast and reliable estimation. Then the position of every followed interest point is filtered on the fly over time, in contrast to most dense approaches from the literature.We finally propose a segmentation of moving objects in the augmented position-speed space, which is made possible by our continuous estimation of feature points position. Target tracking and filtering finally use a GM-PHD approach.
|
3 |
Towards visual navigation in dynamic and unknown environment : trajectory learning and following, with detection and tracking of moving objects / Vers une navigation visuelle en environnement dynamique inconnu : apprentissage et exécution de trajectoire avec détection et suivi d'objets mobilesMárquez-Gámez, David Alberto 26 October 2012 (has links)
L’objectif de ces travaux porte sur la navigation de robots autonomes sur de grandes distances dans des environnements extérieurs dynamiques, plus précisément sur le développement et l’évaluation de fonctions avancées de perception, embarquées sur des véhicules se déplaçant en convoi sur un itinéraire inconnu a priori, dans un environnement urbain ou naturel. Nous avons abordé trois problématiques : d’abord nous avons exploité plusieurs méthodes de l’état de l’art, pour qu’un véhicule A, équipé d’un capteur stéréoscopique, apprenne à la fois une trajectoire et un modèle de l’environnement supposé d’abord statique. Puis nous avons proposé deux modes pour l’exécution de cette trajectoire par un véhicule B équipé d’une simple caméra : soit un mode différé, dans lequel B charge toute la trajectoire apprise par A, puis l’exécute seul, soit un mode convoi, dans lequel B suit A, qui lui envoie par une communication HF, les tronçons de la trajectoire au fur et à mesure qu’ils sont appris. Enfin nous avons considéré le cas des environnements évolutifs et dynamiques, en traitant de la détection d’événements depuis les images acquises depuis un véhicule mobile: détection des changements (disparition ou apparition d’objets statiques, typiquement des véhicules garés dans un milieu urbain), ou de la détection d’objets mobiles (autres véhicules ou piétons) / The global objective of these works concerns the navigation of autonomous robots on long routes in outdoor dynamic environments, more precisely on the development and the evaluation of advanced perception functions, embedded on vehicles moving in a convoy formation, on an a priori unknown route in urban or natural environments. Three issues are tackled: first several methods from the State of the Art have been integrated in order to cope with the visual mapping and the trajectory learning problems for a vehicle A equipped with a stereovision sensor, moving in a large-scale environment, assumed static. Then it is proposed two modes for the execution of this trajectory by a vehicle B equipped by a single camera: either a delayed mode, in which B loads initially all representations learnt by A, and executes alone the recorded trajectory, or a convoy mode, in which B follows A, which sends him by a communication link, the trajectory sections as soon as they are learnt. Finally, it has been considered changing and dynamic environments, dealing with the detection of events from images acquired on a dynamic vehicle: detection of changes (disappearances or appearances of static objects, typically cars parked in a urban environment), or detection of mobile objects (pedestrians or other vehicles)
|
4 |
UM FRAMEWORK PARA O GERENCIAMENTO DA INFORMAÇÃO DE LOCALIZAÇÃO / A FRAMEWORK FOR THE MANAGEMENT OF INFORMATION THE LOCATIONMonteiro, Erich Farias 03 October 2005 (has links)
Made available in DSpace on 2016-08-17T14:53:00Z (GMT). No. of bitstreams: 1
Erich Farias Monteiro.pdf: 1651070 bytes, checksum: 78b0c023947fd323c362d0dc88c2ac6d (MD5)
Previous issue date: 2005-10-03 / FUNDAÇÃO SOUSÂNDRADE DE APOIO AO DESENVOLVIMENTO DA UFMA / This work presents the actual stage for the mobile objects location and for the development of
location based applications or services (LBS). We make a review of available system
architectures and functional requirements to the development of location based applications.
Also we suggest an architecture to this class of applications that encapsulate the location
information management that is completely reusable. To implement this architecture we
describe the implementation of a reusable framework to the location information
management, that makes available functionalities to the efficient management of mobile
objects location information, that is evaluated trough the development of an location based
application to track mobiles objects in an historical site of São Luis city the capital of
Maranhão. / Apresenta-se o estado atual das tecnologias para a localização de objetos móveis e para o
desenvolvimento de sistemas baseados em localização (LBS). Realiza-se uma revisão das
arquiteturas e dos requisitos funcionais para a construção de aplicações baseadas em
localização e propõe-se uma arquitetura para essas aplicações onde a gerência da informação
de localização está desacoplada e pode ser facilmente reutilizada, levando à proposta e
implementação de um framework reutilizável para a gerência da informação de localização,
que disponibiliza funcionalidades para a gestão eficiente da localização dos objetos móveis.
Finalmente, avalia-se a utilização do framework proposto através do desenvolvimento de uma
aplicação LBS para o rastreamento dos usuários que estiverem transitando na região do centro
histórico da cidade de São Luís, disponibilizando recursos de rastreamento, determinação de
proximidade e consultas de rotas percorridas pelo usuário.
|
Page generated in 0.0338 seconds