Spelling suggestions: "subject:"modèle à deux fluides"" "subject:"codèle à deux fluides""
1 |
Modélisation locale diphasique eau-vapeur des écoulements dans les générateurs de vapeur / Local two-phase modeling of the water-steam flows occurring in steam generatorsDenèfle, Romain 14 November 2013 (has links)
Cette travail de thèse est lié au besoin de modélisation des écoulements diphasiques en générateurs de vapeur (entrée liquide et sortie vapeur). La démarche proposée consiste à faire le choix d'une modélisation hybride de l'écoulement, en scindant la phase gaz en deux champs, modélisés de manières différentes. Ainsi, les petites bulles sphériques sont modélisées avec une approche dispersée classique avec le modèle eulérien à deux fluides, et les bulles déformées sont simulées à l'aide d'une méthode de localisation d'interface.Le travail effectué porte sur la mise en place, la vérification et la validation du modèle dédié aux larges bulles déformées, ainsi que le couplage entre les deux approches pour le gaz gaz, permettant des premiers calculs de démonstration utilisant l'approche hybride complète. / The present study is related to the need of modeling the two-phase flows occuring in a steam generator (liquid at inlet and vapour at outlet). The choice is made to investigate a hybrid modeling of the flow, considering the gas phase as two separated fields, each one being modeled with different closure laws. In so doing, the small and spherical bubbles are modeled through a dispersed approach within the two-fluid model, and the distorted bubbles are simulated with an interface locating method.The main outcome is about the implementation, the verification and the validation of the model dedicated to the large and distorted bubbles, as well as the coupling of the two approaches for the gas, allowing the presentation of demonstration calculations using the so-called hybrid approach.
|
2 |
Configurations de vortex magnétiques dans des cylindres mésoscopiques supraconducteursStenuit, Geoffrey 09 July 2004 (has links)
Motivées par des données expérimentales sur la magnétisation de réseau de nanofils de plomb, les résolutions numériques des équations stationnaires de Ginzburg-Landau (GL) se sont focalisées sur les géométries à symétrie axiale. L'effet Meissner, les états représentant un vortex d'Abrikosov ou encore des Vortex Géants (``GiantVortex') centrés à l'origine du cylindre ont alors pu être identifiés sous l’hypothèse d’invariance sous rotation selon l’axe de symétrie du cylindre étudié (modèle à une dimension, 1D). En identifiant le type de transition par le caractère continu ou non du paramètre d'ordre autour du changement de phase, une frontière à l'échelle mésoscopique a également pu être identifiée au travers du modèle 1D. Plus spécifiquement, la limite entre les deux types de transitions décrite par le paramètre phénoménologique κ = λ /ξ ( =1/√2 à l’échelle macroscopique) devient une fonction non constante dépendant à la fois du rayon normalisé, u=R/λ, et de la vorticité L: κ =f(u,L). Les deux longueurs caractéristiques λ et ξ représentent respectivement les longueurs de pénétration et de cohérence d’un échantillon supraconducteur. Une comparaison avec les résultats obtenus par Zharkov permet de valider notre démarche numérique employée pour la résolution numérique des équations de GL à une dimension. En employant un modèle à deux dimensions (2D), la symétrie sous rotation des solutions a également été relâchée. Basée sur le principe de moindre action, la résolution propose alors un schéma numérique indépendant du type d'équations du mouvement à solutionner. Les configurations du type MultiVortex ont alors pu être identifiées, et comparées aux solutions du groupe du Professeur F. Peeters. Ces différents accords ont confirmé la démarche développée. Une modélisation de la magnétisation expérimentale d'un réseau de nanofils a également été développée. De par la taille réduite des nanofils, l'interaction magnétique entre ceux-ci a pu être négligée. La magnétisation totale du réseau est alors construite par une sommation incluant la contribution individuelle en magnétisation de chaque fil, pondérée par un poids reflétant une distribution gaussienne pour les rayons des fils constituant le réseau. La magnétisation individuelle est évidemment obtenue par résolution des équations du mouvement de GL précédemment étudiées avec les modèles 1D et 2D. En ajustant les paramètres libres associés à ce modèle décrivant la magnétisation totale du réseau, les données expérimentales ont pu être reproduites endéans 10% de marge d'erreur, l'intervalle d'incertitude caractéristique de la théorie effective de Ginzburg-Landau. Ces variables attachées au modèle de la magnétisation totale, reprennent la valeur moyenne m et l'écart-type s de la distribution gaussienne, ainsi que les longueurs caractéristiques λ(T) et ξ(T) présentes dans la théorie de GL. Un test totalement indépendant de l'analyse des magnétisations a permis de valider les valeurs déterminées pour la distribution des rayons. Les grandeurs ajustées pour les longueurs λ(T) et ξ(T) ont fait l'objet d'une analyse supplémentaire en termes de leur dépendance en température et du libre parcours moyen des électrons. Malgré l'accord entre les données expérimentales et la magnétisation théorique, il est important de mentionner qu'un paramètre libre supplémentaire, associé à l'apparition de configurations décrivant un vortex magnétique, a dû être introduit. Il modifie empiriquement la métastabilité trop longue en mode champ externe décroissant de l'état décrivant un vortex d'Abrikosov. La correction expulse donc le vortex avant sa prédiction théorique liée à la disparition de la barrière de Bean-Linvingston. Une étude plus approfondie de cette barrière de potentiel fut donc également réalisée. Cependant, elle n'est pas concluante en regard des données expérimentales analysées. Il n'en demeure pas moins que la transition apparaît dans un domaine en champ magnétique cohérent vis-à-vis de la description en énergie libre des états de vorticités voisines d'une unité de quantum de flux magnétique. La correspondance entre les longueurs caractéristiques du modèle phénoménologique de GL et les longueurs issues des théories microscopiques de Pippard et BCS a également abordée. Cette étude permet entre autre de comparer les différentes dépendances possibles en température avec les longueurs obtenues de l'analyse de magnétisation des nanofils en plomb. Au delà de l'accord avec le modèle des deux-fluides de Gorter et Casimir, une extrapolation bien en deçà de la température critique Tc est proposée pour les paramètres phénoménologiques λ(T) et ξ(T) de Ginzburg-Landau. Même si la correspondance entre les magnétisations expérimentales et théoriques semblait déjà l'indiquer, il est possible d'appliquer les équations de Ginzburg-Landau pour décrire le comportement magnétique du plomb bien en deçà de sa température critique. De plus, les paramètres associés possèdent une dépendance tout à fait conforme à une autre théorie empirique, le modèle des deux-fluides. Basée sur le modèle de Pippard, une détermination de la valeur du libre parcours moyen des normaux a également été isolée. Elle justifie alors une distinction entre les deux échantillons analysés en terme de leur degré d'impureté. Les résultats électrons obtenus étant en accord avec les procédures de fabrication des nanofils de plomb, cette nouvelle constatation, positive avec l'expérience, confirme une fois de plus la cohérence du modèle développé pour la magnétisation totale, et justifie l'emploi des équations de GL à toutes les températures en dessous de Tc. / Mesoscopic superconductors are described within the framework of the nonlinear Ginzburg-Landau theory. The two coupled nonlinear equations are solved numerically and we investigate the properties, in particular the order of the transition and the vortex configurations, of cylinders submitted to an external magnetic field. Meissner state, Abrikosov vortices, GiantVortex and MultiVortex solutions are described. The Bean-Livingston barrier in mesoscopic cylinders is also numerically studied. This theoretical work was applied to understand experimental magnetizations of lead nanowires in an array well below the superconducting transition temperature Tc. By freely adjusting the GL phenomenological lengths λ (T) and ξ (T), the experimental magnetization curves are reproduced to within a 10% error margin. The Meissner and the Abrikosov state were also experimentally observed in this apparently type-I superconductor. This fact is a consequence of the non-trivial behaviour of the critical boundary κ _c ($=1/√2 in bulk materials) between type-I and type-II phase transition at mesoscopic scales. Beyond the experimental-theoretical agreement, the question whether the GL model remains valid far below Tc is also addressed. The temperature dependence of the adjusted characteristic lengths is compared with different theoretical and empirical laws. The best agreement is achieved for the Gorter-Casimir two-fluid model. A comparison between lead nanowire arrays electrodeposited under constant and pulsed voltage conditions allows us to distinguish both samples in terms of their electronic mean free paths. The characterisation of the latter quantities concurs perfectly with the experimental expectation given the different electrodeposition techniques.
|
3 |
Modèles superfluides d'étoiles à neutrons en relativité générale : applications à la dynamique des pulsars / General relativistic models of superfluid neutron stars : applications to pulsars dynamicsSourie, Aurélien 19 April 2017 (has links)
L'objectif de cette thèse est d'étudier différents aspects microscopiques et macroscopiques liés à la présence de superfluidité dans les étoiles à neutrons. Dans un premier temps, nous avons calculé des configurations stationnaires d'étoiles à neutrons superfluides en rotation, en relativité générale, basées sur l'utilisation d'équations d'état réalistes. A l'aide de ces configurations d'équilibre, nous avons ensuite développé un modèle simple de glitch, en relativité générale, vu comme un transfert de moment cinétique entre les neutrons superfluides et les particules chargées constituant l'étoile. Cela nous a permis d'obtenir des temps caractéristiques de montée qui pourront être comparés à de futures observations précises de glitches afin d'apporter de meilleures contraintes sur l'intérieur de ces étoiles. Enfin, nous nous sommes également intéressés à la dynamique des vortex superfluides, en présence de tubes de flux, dans le cas où les protons dans le coeur des étoiles formeraient un supraconducteur de type II. / The aim of this thesis is to study different aspects, both microscopic and macroscopic, associated with the presence of a large amount of superfluid matter inside neutron stars. First, we computed stationary configurations of rotating superfluid neutron stars, in general relativity, using realistic equations of state. Based on these equilibrium configurations, we then developed a simple model of pulsar glitches, in general relativity, seen as angular momentum transfers between the superfluid neutrons and the charged particles composing the star. This enables us to infer spin-up time scales that could be compared with future accurate glitch observations, in order to get some constraints on the interior of neutron stars. Finally, we also focused on the dynamics of superfluid vortex lines, accounting for the presence of fluxtubes, if the protons are forming a type II superconductor in the core of neutron stars.
|
4 |
Entraînement dans l'écorce d'une étoile à neutronsChamel, Nicolas 15 December 2004 (has links) (PDF)
Ce travail traite des aspects macroscopiques et microscopiques de l'écorce interne d'une étoile à neutrons, formée d'un solide de noyaux plongé dans un superfluide de neutrons. Une première partie expose une formulation quadridimensionnelle covariante de l'hydrodynamique non relativiste d'un mélange de fluides parfaits, basée sur un principe variationnel convectif. Ce formalisme est appliqué à la description de l'écorce, comme un mélange de deux fluides, un superfluide de neutrons et un plasma de noyaux et d'électrons, couplés par un entraînement non dissipatif. La seconde partie est dédiée à l'étude microscopique de cet entraînement.<br />Appliquant des méthodes de champ moyen au-delà de l'approximation de Wigner-Seitz, nous montrons que cet entraînement résulte de la diffraction de Bragg des neutrons libres sur les noyaux. Celle-ci se traduit par une masse de neutron effective "mésoscopique", qui, contrairement à la masse effective "microscopique", est très grande devant la masse "nue", dans les couches intermédiaires.
|
5 |
Configurations de vortex magnétiques dans des cylindres mésoscopiques supraconducteursStenuit, Geoffrey 09 July 2004 (has links)
Motivées par des données expérimentales sur la magnétisation de réseau de nanofils de plomb, les résolutions numériques des équations stationnaires de Ginzburg-Landau (GL) se sont focalisées sur les géométries à symétrie axiale. L'effet Meissner, les états représentant un vortex d'Abrikosov ou encore des Vortex Géants (``GiantVortex') centrés à l'origine du cylindre ont alors pu être identifiés sous l’hypothèse d’invariance sous rotation selon l’axe de symétrie du cylindre étudié (modèle à une dimension, 1D). En identifiant le type de transition par le caractère continu ou non du paramètre d'ordre autour du changement de phase, une frontière à l'échelle mésoscopique a également pu être identifiée au travers du modèle 1D. Plus spécifiquement, la limite entre les deux types de transitions décrite par le paramètre phénoménologique κ = λ /ξ ( =1/√2 à l’échelle macroscopique) devient une fonction non constante dépendant à la fois du rayon normalisé, u=R/λ, et de la vorticité L: κ =f(u,L). Les deux longueurs caractéristiques λ et ξ représentent respectivement les longueurs de pénétration et de cohérence d’un échantillon supraconducteur. Une comparaison avec les résultats obtenus par Zharkov permet de valider notre démarche numérique employée pour la résolution numérique des équations de GL à une dimension. En employant un modèle à deux dimensions (2D), la symétrie sous rotation des solutions a également été relâchée. Basée sur le principe de moindre action, la résolution propose alors un schéma numérique indépendant du type d'équations du mouvement à solutionner. Les configurations du type MultiVortex ont alors pu être identifiées, et comparées aux solutions du groupe du Professeur F. Peeters. Ces différents accords ont confirmé la démarche développée. Une modélisation de la magnétisation expérimentale d'un réseau de nanofils a également été développée. De par la taille réduite des nanofils, l'interaction magnétique entre ceux-ci a pu être négligée. La magnétisation totale du réseau est alors construite par une sommation incluant la contribution individuelle en magnétisation de chaque fil, pondérée par un poids reflétant une distribution gaussienne pour les rayons des fils constituant le réseau. La magnétisation individuelle est évidemment obtenue par résolution des équations du mouvement de GL précédemment étudiées avec les modèles 1D et 2D. En ajustant les paramètres libres associés à ce modèle décrivant la magnétisation totale du réseau, les données expérimentales ont pu être reproduites endéans 10% de marge d'erreur, l'intervalle d'incertitude caractéristique de la théorie effective de Ginzburg-Landau. Ces variables attachées au modèle de la magnétisation totale, reprennent la valeur moyenne m et l'écart-type s de la distribution gaussienne, ainsi que les longueurs caractéristiques λ(T) et ξ(T) présentes dans la théorie de GL. Un test totalement indépendant de l'analyse des magnétisations a permis de valider les valeurs déterminées pour la distribution des rayons. Les grandeurs ajustées pour les longueurs λ(T) et ξ(T) ont fait l'objet d'une analyse supplémentaire en termes de leur dépendance en température et du libre parcours moyen des électrons. Malgré l'accord entre les données expérimentales et la magnétisation théorique, il est important de mentionner qu'un paramètre libre supplémentaire, associé à l'apparition de configurations décrivant un vortex magnétique, a dû être introduit. Il modifie empiriquement la métastabilité trop longue en mode champ externe décroissant de l'état décrivant un vortex d'Abrikosov. La correction expulse donc le vortex avant sa prédiction théorique liée à la disparition de la barrière de Bean-Linvingston. Une étude plus approfondie de cette barrière de potentiel fut donc également réalisée. Cependant, elle n'est pas concluante en regard des données expérimentales analysées. Il n'en demeure pas moins que la transition apparaît dans un domaine en champ magnétique cohérent vis-à-vis de la description en énergie libre des états de vorticités voisines d'une unité de quantum de flux magnétique. La correspondance entre les longueurs caractéristiques du modèle phénoménologique de GL et les longueurs issues des théories microscopiques de Pippard et BCS a également abordée. Cette étude permet entre autre de comparer les différentes dépendances possibles en température avec les longueurs obtenues de l'analyse de magnétisation des nanofils en plomb. Au delà de l'accord avec le modèle des deux-fluides de Gorter et Casimir, une extrapolation bien en deçà de la température critique Tc est proposée pour les paramètres phénoménologiques λ(T) et ξ(T) de Ginzburg-Landau. Même si la correspondance entre les magnétisations expérimentales et théoriques semblait déjà l'indiquer, il est possible d'appliquer les équations de Ginzburg-Landau pour décrire le comportement magnétique du plomb bien en deçà de sa température critique. De plus, les paramètres associés possèdent une dépendance tout à fait conforme à une autre théorie empirique, le modèle des deux-fluides. Basée sur le modèle de Pippard, une détermination de la valeur du libre parcours moyen des normaux a également été isolée. Elle justifie alors une distinction entre les deux échantillons analysés en terme de leur degré d'impureté. Les résultats électrons obtenus étant en accord avec les procédures de fabrication des nanofils de plomb, cette nouvelle constatation, positive avec l'expérience, confirme une fois de plus la cohérence du modèle développé pour la magnétisation totale, et justifie l'emploi des équations de GL à toutes les températures en dessous de Tc. / Mesoscopic superconductors are described within the framework of the nonlinear Ginzburg-Landau theory. The two coupled nonlinear equations are solved numerically and we investigate the properties, in particular the order of the transition and the vortex configurations, of cylinders submitted to an external magnetic field. Meissner state, Abrikosov vortices, GiantVortex and MultiVortex solutions are described. The Bean-Livingston barrier in mesoscopic cylinders is also numerically studied. This theoretical work was applied to understand experimental magnetizations of lead nanowires in an array well below the superconducting transition temperature Tc. By freely adjusting the GL phenomenological lengths λ (T) and ξ (T), the experimental magnetization curves are reproduced to within a 10% error margin. The Meissner and the Abrikosov state were also experimentally observed in this apparently type-I superconductor. This fact is a consequence of the non-trivial behaviour of the critical boundary κ _c ($=1/√2 in bulk materials) between type-I and type-II phase transition at mesoscopic scales. Beyond the experimental-theoretical agreement, the question whether the GL model remains valid far below Tc is also addressed. The temperature dependence of the adjusted characteristic lengths is compared with different theoretical and empirical laws. The best agreement is achieved for the Gorter-Casimir two-fluid model. A comparison between lead nanowire arrays electrodeposited under constant and pulsed voltage conditions allows us to distinguish both samples in terms of their electronic mean free paths. The characterisation of the latter quantities concurs perfectly with the experimental expectation given the different electrodeposition techniques.
|
6 |
Modélisation locale diphasique eau-vapeur des écoulements dans les générateurs de vapeurDenèfle, Romain 14 November 2013 (has links) (PDF)
Cette travail de thèse est lié au besoin de modélisation des écoulements diphasiques en générateurs de vapeur (entrée liquide et sortie vapeur). La démarche proposée consiste à faire le choix d'une modélisation hybride de l'écoulement, en scindant la phase gaz en deux champs, modélisés de manières différentes. Ainsi, les petites bulles sphériques sont modélisées avec une approche dispersée classique avec le modèle eulérien à deux fluides, et les bulles déformées sont simulées à l'aide d'une méthode de localisation d'interface.Le travail effectué porte sur la mise en place, la vérification et la validation du modèle dédié aux larges bulles déformées, ainsi que le couplage entre les deux approches pour le gaz gaz, permettant des premiers calculs de démonstration utilisant l'approche hybride complète.
|
7 |
Modélisation locale diphasique eau-vapeur des écoulements dans les générateurs de vapeur.Denèfle, Romain 14 November 2013 (has links) (PDF)
Cette travail de thèse est lié au besoin de modélisation des écoulements diphasiques en générateurs de vapeur (entrée liquide et sortie vapeur). La démarche proposée consiste à faire le choix d'une modélisation hybride de l'écoulement, en scindant la phase gaz en deux champs, modélisés de manières différentes. Ainsi, les petites bulles sphériques sont modélisées avec une approche dispersée classique avec le modèle eulérien à deux fluides, et les bulles déformées sont simulées à l'aide d'une méthode de localisation d'interface. Le travail effectué porte sur la mise en place, la vérification et la validation du modèle dédié aux larges bulles déformées, ainsi que le couplage entre les deux approches pour le gaz gaz, permettant des premiers calculs de démonstration utilisant l'approche hybride complète.
|
8 |
Simulation aux grandes échelles des lits fluidisés circulants gaz-particule / Development of Large Eddy Simulation Approach for Simulation of Circulating Fluidized BedsÖzel, Ali 18 October 2011 (has links)
Les simulations numériques des équations d’Euler deux-fluides réalisé sur des maillages grossiers éliminent les structures fins d’écoulement gaz-solide dans les lits fluidisés. Pour précisément estimer l’hydrodynamique globale de lit, il faut proposer une modélisation qui prend en compte les effets de structure non-résolue. Dans ce but, les maillages sont raffinés pour obtenir le résultat de simulation pleinement résolue ce que les grandeurs statistiques ne modifient plus avec un autre raffinement pour le lit fluidisé périodique dilué gaz-particules sur une géométrie 3D cartésienne et ce résultat est utilisé pour tests "a priori". Les résultats de tests "a priori" montrent que l’équation filtrée de la quantité de mouvement est effectuée mais il faut prendre en compte le flux de la fraction volumique de solide de sous-maille en raison de l’interaction locale de la vitesse du gaz et la fraction volumique de solide pour la force traniée. Nous proposons les modèles fonctionnels et structurels pour le flux de la fraction volumique de solide de sous-maille. En plus, les modèles fermetures du tenseur de sous-maille de la phase dispersée sont similaires aux modèles classiquement utilisés en écoulement turbulent monophasique. Tous les modèles sont validés par test "a priori" et "a posteriori" / Eulerian two fluid approach is generally used to simulate gas-solid flows in industrial circulating fluidized beds. Because of limitation of computational resources, simulations of large vessels are usually performed by using too coarse grid. Coarse grid simulations can not resolve fine flow scales which can play an important role in the dynamic behaviour of the beds. In particular, cancelling out the particle segregation effect of small scales leads to an inadequate modelling of the mean interfacial momentum transfer between phases and particulate shear stresses by secondary effect. Then, an appropriate modelling ac counting for influences of unresolved structures has to be proposed for coarse-grid simu-lations. For this purpose, computational grids are refined to get mesh-independent result where statistical quantities do not change with further mesh refinement for a 3-D peri-odic circulating fluidized bed. The 3-D periodic circulating fluidized is a simple academic configuration where gas-solid flow conducted with A-type particles is periodically driven along the opposite direction of the gravity. The particulate momentum and agitation equations are filtered by the volume averaging and the importance of additional terms due to the averaging procedure are investigated by budget analyses using the mesh independent result. Results show that the filtered momentum equation of phases can be computed on coarse grid simulations but sub-grid drift velocity due to the sub-grid correlation between the local fluid veloc- ity and the local particle volume fraction and particulate sub-grid shear stresses must be taken into account. In this study, we propose functional and structural models for sub- grid drift velocity, written in terms of the difference between the gas velocity-solid volume fraction correlation and the multiplication of the filtered gas velocity with the filtered solid volume fraction. Particulate sub-grid shear stresses are closed by models proposed for single turbulent flows. Models’ predictabilities are investigated by a priori tests and they are validated by coarse-grid simulations of 3-D periodic circulating, dense fluidized beds and experimental data of industrial scale circulating fluidized bed in manner of a posteriori tests
|
Page generated in 0.0552 seconds