• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modèle de Littelmann pour cristaux géométriques, fonctions de Whittaker sur des groupes de Lie et mouvement brownien.

Chhaibi, Reda 24 January 2013 (has links) (PDF)
De façon générale, cette thèse s'intéresse aux liens entre théorie des représentations et probabilités. Elle se subdivise en principalement trois parties. Dans un premier volet plutôt algébrique, nous construisons un modèle de chemins pour les cristaux géométriques de Berenstein et Kazhdan, pour un groupe de Lie complexe semi-simple. Il s'agira pour l'essentiel de décrire la structure algébrique, ses morphismes naturels et ses paramétrisations. La théorie de la totale positivité y jouera un role particulièrement important. Ensuite, nous avons choisi d'anticiper sur les résultats probabilistes et d'exhiber une mesure canonique sur les cristaux géométriques. Celle-ci utilise comme ingrédients le superpotentiel de variété drapeau, et une mesure invariante sous les actions cristallines. La mesure image par l'application poids joue le role de mesure de Duistermaat-Heckman. Sa transformée de Laplace définit les fonctions de Whittaker, fournissant une formule intégrale particulièrement intéressante pour tous les groupes de Lie. Il apparait alors clairement que les fonctions de Whittaker sont aux cristaux géométriques, ce que les caractères sont aux cristaux combinatoires classiques. La règle de Littlewood-Richardson est aussi exposée. Enfin nous présentons l'approche probabiliste permettant de trouver la mesure canonique. Elle repose sur l'idée fondamentale que la mesure de Wiener induira la bonne mesure sur les structures algébriques du modèle de chemins. Dans une dernière partie, nous démontrons comment notre modèle géométrique dégénère en le modèle de Littelmann continu classique, pour retrouver des résultats connus. Par exemple, la mesure canonique sur un cristal géométrique de plus haut poids dégénère en une mesure uniforme sur un polytope, et retrouve les paramétrisations des cristaux continus.
2

Study of plactic monoids by rewriting methods / Etude des monoïdes plaxiques par des méthodes de réécriture

Hage, Nohra 08 December 2016 (has links)
Cette thèse est consacrée à l’étude des monoïdes plaxiques par une nouvelle approche utilisant des méthodes issues de la réécriture. Ces méthodes sont appliquées à des présentations de monoïdes plaxiques décrites en termes de tableaux de Young, de bases cristallines de Kashiwara et de modèle des chemins de Littelmann. On étudie le problème des syzygies pour la présentation de Knuth des monoïdes plaxiques. En utilisant la procédure de complétion homotopique basée sur les procédures de complétion de Squier et de Knuth–Bendix, on construit des présentations cohérentes de monoïdes plaxiques de type A. Une telle présentation cohérente étend la notion de présentation convergente d’un monoïde par une famille génératrice de syzygies, décrivant toutes les relations entre les relations. On explicite une présentation cohérente finie des monoïdes plaxiques de type A avec les générateurs colonnes. Cependant, cette présentation n’est pas minimale dans le sens que plusieurs de ses générateurs sont superflus. En appliquant la procédure de réduction homotopique, on réduit cette présentation en une présentation cohérente finie qui étend la présentation de Knuth, donnantainsi toutes les syzygies des relations de Knuth. D’une manière plus générale, on étudie des présentations de monoïdes plaxiques généralisés du point de vue de la réécriture. On construit des présentations convergentes finies de ces monoïdes en utilisant les chemins de Littelmann. De plus, on étudie ces présentations pour le type C en termes de bases cristallines de Kashiwara. En introduisant les générateurs colonnes admissibles, on construit une présentation convergente finie du monoïde plaxique de type C avec des relations explicites. Cette approche nous permettrait d’étudier le problème des syzygies des présentations de monoïdes plaxiques en tout type / This thesis focuses on the study of plactic monoids by a new approach using methods issued from rewriting theory. These methods are applied on presentations of plactic monoids given in terms of Young tableaux, Kashiwara’s crystal bases and Littelmann path model. We study the syzygy problem for the Knuth presentation of the plactic monoids. Using the homotopical completion procedure that extends Squier’s and Knuth–Bendix’s completions procedure, we construct coherent presentations of plactic monoids of type A. Such a coherent presentation extends the notion of a presentation of a monoid by a family of generating syzygies, taking into account all the relations among the relations. We make explicit a finite coherent presentation of plactic monoids of type A with the column generators. However, this presentation is not minimal in the sense that many of its generators are superfluous. After applying the homotopical reduction procedure on this presentation, we reduce it to a finite coherent one that extends the Knuth presentation, giving then all the syzygies of the Knuth relations. More generally, we deal with presentations of plactic monoids of any type from the rewriting theory perspective. We construct finite convergent presentations for these monoids in a general way using Littelmann paths. Moreover, we study the latter presentations in terms of Kashiwara’s crystal graphs for type C. By introducing the admissible column generators, we obtain a finite convergent presentation of the plactic monoid of type C with explicit relations. This approach should allow us to study the syzygy problem for the presentations of plactic monoids for any type

Page generated in 0.1262 seconds