Spelling suggestions: "subject:"modèle flux"" "subject:"codèle flux""
1 |
Efficient Stream Analysis and its Application to Big Data Processing / Analyse efficace de flux de données et applications au traitement des grandes masses de donnéesRivetti di Val Cervo, Nicolo 30 September 2016 (has links)
L’analyse de flux de données est utilisée dans beaucoup de contexte où la masse des données et/ou le débit auquel elles sont générées, excluent d’autres approches (par exemple le traitement par lots). Le modèle flux fourni des solutions aléatoires et/ou fondées sur des approximations pour calculer des fonctions d’intérêt sur des flux (repartis) de n-uplets, en considérant le pire cas, et en essayant de minimiser l’utilisation des ressources. En particulier, nous nous intéressons à deux problèmes classiques : l’estimation de fréquence et les poids lourds. Un champ d’application moins courant est le traitement de flux qui est d’une certaine façon un champ complémentaire aux modèle flux. Celui-ci fournis des systèmes pour effectuer des calculs génériques sur les flux en temps réel souple, qui passent à l’échèle. Cette dualité nous permet d’appliquer des solutions du modèle flux pour optimiser des systèmes de traitement de flux. Dans cette thèse, nous proposons un nouvel algorithme pour la détection d’éléments surabondants dans des flux repartis, ainsi que deux extensions d’un algorithme classique pour l’estimation des fréquences des items. Nous nous intéressons également à deux problèmes : construire un partitionnement équitable de l’univers des n-uplets par rapport à leurs poids et l’estimation des valeurs de ces n-uplets. Nous utilisons ces algorithmes pour équilibrer et/ou délester la charge dans les systèmes de traitement de flux. / Nowadays stream analysis is used in many context where the amount of data and/or the rate at which it is generated rules out other approaches (e.g., batch processing). The data streaming model provides randomized and/or approximated solutions to compute specific functions over (distributed) stream(s) of data-items in worst case scenarios, while striving for small resources usage. In particular, we look into two classical and related data streaming problems: frequency estimation and (distributed) heavy hitters. A less common field of application is stream processing which is somehow complementary and more practical, providing efficient and highly scalable frameworks to perform soft real-time generic computation on streams, relying on cloud computing. This duality allows us to apply data streaming solutions to optimize stream processing systems. In this thesis, we provide a novel algorithm to track heavy hitters in distributed streams and two extensions of a well-known algorithm to estimate the frequencies of data items. We also tackle two related problems and their solution: provide even partitioning of the item universe based on their weights and provide an estimation of the values carried by the items of the stream. We then apply these results to both network monitoring and stream processing. In particular, we leverage these solutions to perform load shedding as well as to load balance parallelized operators in stream processing systems.
|
2 |
Machine virtuelle universelle pour codage vidéo reconfigurableGorin, Jérôme 22 November 2011 (has links) (PDF)
Cette thèse propose un nouveau paradigme de représentation d'applications pour les machines virtuelles, capable d'abstraire l'architecture des systèmes informatiques. Les machines virtuelles actuelles reposent sur un modèle unique de représentation d'application qui abstrait les instructions des machines et sur un modèle d'exécution qui traduit le fonctionnement de ces instructions vers les machines cibles. S'ils sont capables de rendre les applications portables sur une vaste gamme de systèmes, ces deux modèles ne permettent pas en revanche d'exprimer la concurrence sur les instructions. Or, celle-ci est indispensable pour optimiser le traitement des applications selon les ressources disponibles de la plate-forme cible. Nous avons tout d'abord développé une représentation " universelle " d'applications pour machine virtuelle fondée sur la modélisation par graphe flux de données. Une application est ainsi modélisée par un graphe orienté dont les sommets sont des unités de calcul (les acteurs) et dont les arcs représentent le flux de données passant au travers de ces sommets. Chaque unité de calcul peut être traitée indépendamment des autres sur des ressources distinctes. La concurrence sur les instructions dans l'application est alors explicite. Exploiter ce nouveau formalisme de description d'applications nécessite de modifier les règles de programmation. A cette fin, nous avons introduit et défini le concept de " Représentation Canonique et Minimale " d'acteur. Il se fonde à la fois sur le langage de programmation orienté acteur CAL et sur les modèles d'abstraction d'instructions des machines virtuelles existantes. Notre contribution majeure qui intègre les deux nouvelles représentations proposées, est le développement d'une " Machine Virtuelle Universelle " (MVU) dont la spécificité est de gérer les mécanismes d'adaptation, d'optimisation et d'ordonnancement à partir de l'infrastructure de compilation Low-Level Virtual Machine. La pertinence de cette MVU est démontrée dans le contexte normatif du codage vidéo reconfigurable (RVC). En effet, MPEG RVC fournit des applications de référence de décodeurs conformes à la norme MPEG-4 partie 2 Simple Profile sous la forme de graphe flux de données. L'une des applications de cette thèse est la modélisation par graphe flux de données d'un décodeur conforme à la norme MPEG-4 partie 10 Constrained Baseline Profile qui est deux fois plus complexe que les applications de référence MPEG RVC. Les résultats expérimentaux montrent un gain en performance en exécution de deux pour des plates-formes dotées de deux cœurs par rapport à une exécution mono-cœur. Les optimisations développées aboutissent à un gain de 25% sur ces performances pour des temps de compilation diminués de moitié. Les travaux effectués démontrent le caractère opérationnel et universel de cette norme dont le cadre d'utilisation dépasse le domaine vidéo pour s'appliquer à d'autres domaine de traitement du signal (3D, son, photo...)
|
3 |
Machine virtuelle universelle pour codage vidéo reconfigurable / A universal virtual machine for reconfigurable video codingGorin, Jérôme 22 November 2011 (has links)
Cette thèse propose un nouveau paradigme de représentation d’applications pour les machines virtuelles, capable d’abstraire l’architecture des systèmes informatiques. Les machines virtuelles actuelles reposent sur un modèle unique de représentation d’application qui abstrait les instructions des machines et sur un modèle d’exécution qui traduit le fonctionnement de ces instructions vers les machines cibles. S’ils sont capables de rendre les applications portables sur une vaste gamme de systèmes, ces deux modèles ne permettent pas en revanche d’exprimer la concurrence sur les instructions. Or, celle-ci est indispensable pour optimiser le traitement des applications selon les ressources disponibles de la plate-forme cible. Nous avons tout d’abord développé une représentation « universelle » d’applications pour machine virtuelle fondée sur la modélisation par graphe flux de données. Une application est ainsi modélisée par un graphe orienté dont les sommets sont des unités de calcul (les acteurs) et dont les arcs représentent le flux de données passant au travers de ces sommets. Chaque unité de calcul peut être traitée indépendamment des autres sur des ressources distinctes. La concurrence sur les instructions dans l’application est alors explicite. Exploiter ce nouveau formalisme de description d'applications nécessite de modifier les règles de programmation. A cette fin, nous avons introduit et défini le concept de « Représentation Canonique et Minimale » d’acteur. Il se fonde à la fois sur le langage de programmation orienté acteur CAL et sur les modèles d’abstraction d’instructions des machines virtuelles existantes. Notre contribution majeure qui intègre les deux nouvelles représentations proposées, est le développement d’une « Machine Virtuelle Universelle » (MVU) dont la spécificité est de gérer les mécanismes d’adaptation, d’optimisation et d’ordonnancement à partir de l’infrastructure de compilation Low-Level Virtual Machine. La pertinence de cette MVU est démontrée dans le contexte normatif du codage vidéo reconfigurable (RVC). En effet, MPEG RVC fournit des applications de référence de décodeurs conformes à la norme MPEG-4 partie 2 Simple Profile sous la forme de graphe flux de données. L’une des applications de cette thèse est la modélisation par graphe flux de données d’un décodeur conforme à la norme MPEG-4 partie 10 Constrained Baseline Profile qui est deux fois plus complexe que les applications de référence MPEG RVC. Les résultats expérimentaux montrent un gain en performance en exécution de deux pour des plates-formes dotées de deux cœurs par rapport à une exécution mono-cœur. Les optimisations développées aboutissent à un gain de 25% sur ces performances pour des temps de compilation diminués de moitié. Les travaux effectués démontrent le caractère opérationnel et universel de cette norme dont le cadre d’utilisation dépasse le domaine vidéo pour s’appliquer à d’autres domaine de traitement du signal (3D, son, photo…) / This thesis proposes a new paradigm that abstracts the architecture of computer systems for representing virtual machines’ applications. Current applications are based on abstraction of machine’s instructions and on an execution model that reflects operations of these instructions on the target machine. While these two models are efficient to make applications portable across a wide range of systems, they do not express concurrency between instructions. Expressing concurrency is yet essential to optimize processing of application as the number of processing units is increasing in computer systems. We first develop a “universal” representation of applications for virtual machines based on dataflow graph modeling. Thus, an application is modeled by a directed graph where vertices are computation units (the actors) and edges represent the flow of data between vertices. Each processing units can be treated apart independently on separate resources. Concurrency in the instructions is then made explicitly. Exploit this new description formalism of applications requires a change in programming rules. To that purpose, we introduce and define a “Minimal and Canonical Representation” of actors. It is both based on actor-oriented programming and on instructions ‘abstraction used in existing Virtual Machines. Our major contribution, which incorporates the two new representations proposed, is the development of a “Universal Virtual Machine” (UVM) for managing specific mechanisms of adaptation, optimization and scheduling based on the Low-Level Virtual Machine (LLVM) infrastructure. The relevance of the MVU is demonstrated on the MPEG Reconfigurable Video Coding standard. In fact, MPEG RVC provides decoder’s reference application compliant with the MPEG-4 part 2 Simple Profile in the form of dataflow graph. One application of this thesis is a new dataflow description of a decoder compliant with the MPEG-4 part 10 Constrained Baseline Profile, which is twice as complex as the reference MPEG RVC application. Experimental results show a gain in performance close to double on a two cores compare to a single core execution. Developed optimizations result in a gain on performance of 25% for compile times reduced by half. The work developed demonstrates the operational nature of this standard and offers a universal framework which exceeds the field of video domain (3D, sound, picture...)
|
Page generated in 0.0488 seconds