• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 39
  • 39
  • 36
  • 20
  • 11
  • 10
  • 10
  • 10
  • 9
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Sensibilité de la précipitation à la résolution horizontale dans le modèle régional canadien du climat

Powers, Michael Jr. 09 1900 (has links) (PDF)
À l'aide de la quatrième génération du Modèle Régional Canadien du Climat (MRCC4), deux paires de simulations pilotées à leurs frontières par les réanalyses NCEP NRA-2 ont été créées pour deux régions distinctes du Canada : 1) l'ouest canadien (WEST CAN), et 2) l'est canadien (EAST CAN). Pour ces deux régions, chaque paire de simulations consiste en une simulation dont la résolution horizontale est de 15 km (vrai à 60°N) et une simulation dont la résolution horizontale est de 45 km (vrai à 60°N). En utilisant ces simulations, cette étude tente de déterminer l'impact de l'augmentation de la résolution horizontale sur le champ de précipitation du modèle. Les résultats montrent que l'augmentation de la résolution horizontale permet d'obtenir une représentation plus réaliste de la topographie dans les simulations à 15 km, puisqu'elles illustrent de plus fines caractéristiques du terrain, tels que d'étroites et profondes vallées ainsi que de hauts, mais petits, complexes montagneux. De plus, notre étude révèle que les simulations à 15 km produisent davantage de convergence d'humidité et d'évapotranspiration, menant ainsi à une augmentation de la précipitation. L'augmentation de la résolution permet à la simulation à 15 km de produire de la neige durant toute l'année au sommet des plus hautes montagnes du domaine WEST CAN. Pour le domaine EAST CAN, la précipitation totale et solide plus grande retrouvée dans la simulation à 15 km mène à un ruissellement supérieur à celui retrouvé dans la simulation à 45 km. En comparant la précipitation simulée avec la précipitation observée provenant du réseau de stations d'Environnement Canada mesurant la précipitation horaire, on trouve que les simulations à 15 km produisent une distribution de la fréquence des précipitations horaires et une distribution de l'intensité des précipitations plus réaliste. Contrairement aux simulations à 15 km, les simulations à 45 km produisent moins d'événements horaires d'intensité modérée à très forte (3-10 mm/h) que ce qui est observé. Néanmoins, autant les simulations à 15 km que celles à 45 km produisent un biais positif en termes de fréquence et d'intensité des événements horaires de faibles intensités (0,2-3 mm/h). Conséquemment, une trop grande quantité de précipitation est générée annuellement par ce type d'événements, comparativement aux observations. La précipitation simulée est alors généralement plus grande que celle observée. Notre étude révèle également que pour analyser la fréquence et l'intensité de la précipitation, il est plus approprié d'utiliser une période d'accumulation d'une heure plutôt qu'une période d'accumulation de 24 heures. En effet, cela nous permet de comprendre plus facilement quels types d'événements le modèle est capable de reproduire et quelle est la contribution (en termes de quantité de précipitation) de chacun de ces événements. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : modélisation régionale du climat, haute résolution, précipitation, MRCC
12

Étude quantitative du cycle de l'eau à l'échelle des grands bassins versants de l'Amérique du Nord avec le modèle régional canadien du climat

Music, Biljana January 2008 (has links) (PDF)
Le Modèle Régional Canadien du Climat (MRCC) fait partie d'une grande variété de modèles climatiques développés à travers le monde. Basé sur les lois fondamentales de la physique et sur les techniques numériques les plus modernes et les plus performantes, il génère des variables avec une bonne résolution spatiale qui sont physiquement cohérentes entre elles. Dans le cadre de cette thèse, le MRCC est utilisé pour étudier une large gamme de processus liés au cycle de l'eau. Une approche intégrée d'analyse et de validation du cycle hydrologique du modèle a été développée. Cette approche comprend une analyse à l'échelle multi-annuelle pour l'ensemble d'un bassin versant et intègre les deux branches du cycle hydrologique : atmosphérique et terrestre. Cette façon de procéder nous a permis d'évaluer la capacité de trois versions du MRCC à simuler correctement chacune des composantes du bilan hydrologique. Parallèlement, la sensibilité de ces composantes aux différents paramétrages physiques a été examinée. Dans un premier temps, les comosantes du cycles hydrologiques sur le bassin versant du Mississippi simulées par les versions 3.6 et 4.0 du MRCC ont été comparées et évaluées par les observations et quasi-observations (estimations basées sur les observations et sur une analyse du bilan de l'eau). Les changements entre la version 3.6 et 4.0 portent sur plusieurs éléments: le schéma de radiation solaire à deux bandes a été remplacé par un schéma à quatre bandes; le schéma de surface de la première génération a été changé par un schéma beaucoup plus sophistiqué de la deuxième génération ; les traitements de couverture des nuages et du transfert turbulent dans la couche limite ont été également améliorés. L'effet net de tous ces changements dans les paramétrages physiques du MRCC est une réduction importante des biais moyens annuels d'évapotranspiration (de 42% à 10%) et de précipitation (de 17% à -6%) ainsi qu'une meilleure représentation de la distribution spatiale de ces variables. Les cycles annuels de précipitation, d'évapotranspiration, de convergence de flux d'humidité et de tendance dans le stockage de l'eau terrestre ont également montré une amélioration importante. Cependant, le biais annuel du ruissellement a légèrement augmenté (de -41 % a -45%). Dans un deuxième temps, une paire de simulations se distinguant seulement par le paramétrage de processus de surface a été analysée afin de mieux comprendre le rôle de ces processus dans le cycle hydrologique du modèle. Les résultats de l'analyse, effectuée sur trois grands bassins versants (Mississippi, Saint-Laurent et Mackenzie), montrent que le schéma simple de la première génération a d'importantes limitations dans la simulation des processus associés à l'évapotranspiration. Si les biais dans les moyennes annuelles des composantes principales du cycle de l'eau pour les simulations basées sur les deux schémas de surface sont plutôt similaires, les cycles annuels basés sur le schéma de la première génération montrent des biais très grands. L'analyse d'une autre paire de simulations, générées avec la même version du modèle, mais pilotées avec des réanalyses atmosphériques différentes, a mis en évidence la sensibilité du cycle hydrologique aux données utilisées pour piloter le modèle régional à ses frontières. La sensibilité aux données du pilote est en général plus faible que la sensibilité au schéma de surface et s'est montrée plus grande pour les bassins nordiques (Mackenzie et Saint-Laurent). L'analyse d'une troisième paire de simulations avec des conditions initiales différentes a montré que la variabilité interne du modèle à l'échelle multi-annuelle sur l'ensemble d'un bassin versant est négligeable par rapport aux modifications introduites par le changement du schéma de surface et du pilote. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Cycle hydrologique, Bassin versant, Modèle climatique, Paramétrages physiques.
13

Étude des effets reliés à la taille du domaine d'intégration d'une simulation climatique régionale avec le protocole du grand frère

Leduc, Martin January 2007 (has links) (PDF)
Les modèles régionaux de climat (MRCs) permettent de simuler les écoulements atmosphériques sur une région limitée de la surface terrestre. Pilotés à leurs frontières latérales par des données à basse résolution provenant de modèles mondiaux (MCGs), ils permettent d'augmenter considérablement la résolution spatiale des simulations en vue de répondre au besoin grandissant d'évaluer les impacts régionaux reliés aux changements climatiques. Plusieurs études ont démontré que la taille du domaine régional est un paramètre pouvant affecter considérablement les résultats des simulations. En effet, le domaine doit être assez grand pour permettre le développement des fines échelles qui n'existent pas dans les conditions aux frontières latérales. D'un autre côté, une simulation effectuée sur un trop grand domaine peut montrer d'importantes différences avec les données de pilotage si aucun forçage des grandes échelles n'est appliqué à l'intérieur du domaine régional. Les effets reliés à la taille du domaine d'intégration d'une simulation MRC sont évalués selon le cadre expérimental du "Grand-Frère". L'expérience consiste d'abord à générer une simulation climatique à haute résolution (-45 km) sur un domaine continental couvrant la majorité de l'Amérique du Nord, sur 196x196 points de grille. Cette simulation de référence, le Grand-Frère (GF), est ensuite traitée à l'aide d'un filtre passe-bas ayant la propriété de conserver les plus grandes échelles de l'écoulement (approximativement ≥ 2160 km). La série de données ainsi obtenue, le Grand-Frère Filtré (GFF), possède un niveau de détails similaire à celui des données provenant des MCGs. On utilise alors le GFF pour piloter quatre simulations, les Petits-Frères (PFs), à l'aide du même modèle mais sur des domaines plus restreints et de tailles différentes qu'on notera PFl à PF4, et qui ont des dimensions respectives de 144x144, 120x120, 96x96 et 72x72 points de grille. Les résultats des PFs sont comparés avec le GF en cumulant les statistiques climatiques (moyenne temporelle et écart-type) sur quatre mois d'hiver, au-dessus d'une zone commune correspondant pratiquement à la province canadienne du Québec. De manière générale, les patrons (pression, vent, humidité relative et taux de précipitation) des PFs s'améliorent en corrélation spatiale par rapport au GF lorsque le domaine est réduit de 144x144 à 72x72. Cette tendance a aussi été observée pour la moyenne temporelle des fines échelles de l'écoulement. Toutefois, il a été observé que l'intensité de la variabilité transitoire (écart-type) de ces échelles pouvait être compromise par la proximité des frontières latérales par rapport à la zone d'intérêt. En effet, d'importantes sous-estimations ont été détectées, particulièrement du côté entrant du domaine, ce qui suggère l'existence d'une distance de "spin-up" se devant d'être parcourue par l'écoulement avant que celui-ci démontre des particularités de fines échelles. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Modèle régional de climat, Sensibilité à la taille du domaine, Petites échelles, Protocole du Grand-Frère.
14

Étude des effets de la position de la frontière supérieure sur des simulations hémisphériques du modèle régional canadien du climat

Paquin, Jean-Philippe January 2007 (has links) (PDF)
Le présent projet évalue la sensibilité du Modèle régional canadien du climat (MRCC) à la position de sa frontière supérieure. Les premières simulations en configuration hémisphérique ont montré que le MRCC simule mal la structure thermique de la haute troposphère et de la basse stratosphère, surtout en hiver au-dessus du pôle Nord. Ce projet teste l'hypothèse que la position de la frontière supérieure à 29 km gêne la simulation de la circulation méridienne stratosphérique (CMS). La CMS est responsable d'une subsidence au-dessus de la région polaire hivernale, réchauffant par compression adiabatique l'ensemble de la stratosphère et la haute troposphère. Afin de vérifier cette hypothèse, les résultats de deux groupes de simulations sont comparés, le premier ayant sa frontière supérieure à 29km et le second à 45km. Les résultats montrent que le déplacement de la frontière supérieure de 29 à 45km permet de réduire localement certains biais pour la basse stratosphère, mais la structure thermique verticale comporte de nouveaux biais. Cette étude a permis d'identifier certains facteurs susceptibles d'influencer les résultats du modèle. Premièrement, les réanalyses ERA40 utilisées pour évaluer les résultats sont biaisées de plusieurs degrés dans la haute stratosphère. Deuxièmement, les paramétrages du déferlement des ondes de gravité et du roof drag qui ont été introduits directement à partir du Modèle canadien de circulation général semblent être inadéquats pour la configuration hémisphérique MRCC. Troisièmement, les concentrations d'ozone stratosphérique dans le MRCC sont vraisemblablement surestimées. Le MRCC ne comporte pas de module de chimie interactif, mais la radiation réagit aux concentrations des espèces chimiques prescrites. Finalement, le choix des années de simulations, de 1991 à 1995, complique d'avantage l'analyse des résultats puisque l'éruption du Pinatubo en 1991 modifie le climat observé des années subséquentes, modifications dont le MRCC ne peut tenir compte. Toutes ces hypothèses sont avancées suite à l'étude faite au cours de ce mémoire, mais leur vérification nécessitera le développement de nouveaux outils. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Modélisation climatique, Simulations hémisphériques, Sensibilité à la frontière supérieure.
15

Les composantes reproductibles et non reproductibles dans un ensemble de simulations par un modèle régional du climat

Separovic, Leo January 2007 (has links) (PDF)
L'objectif de la mise à l'échelle dynamique par les Modèles Régionaux du Climat (MRC) est de générer une variabilité spatio-temporelle de fine échelle à partir des champs à faible résolution. La plupart des MRC sont définis comme un problème de conditions aux frontières, où les Conditions aux Frontières Latérales (CFL) sont définies à partir des champs de pilotage à faible résolution. La variabilité interne des modèles régionaux met en question l'unicité de sa solution. Une petite différence, aux petites échelles des spectres des champs simulés, se propage vers les échelles plus grandes, et ajoute une composante aléatoire au signal forcé. Au même moment, l'advection de l'information prescrite par les conditions aux frontières latérales vers l'intérieur du domaine contraint la partie forcée de la solution du modèle. Par conséquent la variabilité spatio-temporelle générée par les MRC se compose d'une composante reproductible associée au forçage externe, i.e. le forçage exercé par l'extérieur sur l'atmosphère simulée, et d'une composante non-reproductible, associée à la variabilité interne. La présente étude examine comment un MRC partage sa variabilité spatio-temporelle entre les deux composantes. L'analyse est basée sur un ensemble de 20 simulations, effectuée par le Modèle Régional Canadien du Climat (MRCC) pour une saison d'été. Les simulations sont pilotées par les réanalyses NCEP. La composante reproductible est identifiée par la moyenne d'ensemble tandis que la composante non-reproductible est échantillonnée à partir des déviations des membres de l'ensemble par rapport à la moyenne d'ensemble. Quand les champs instantanés sont étudiés, les résultats montrent que la variabilité interne dépend fortement de l'échelle spatiale; les plus petites échelles sont les plus affectées. Aux grandes échelles de l'ordre de 1000km, la composante reproductible est beaucoup plus grande que la composante non-reproductible. Par contre, aux échelles de l'ordre de 100km, la composante non-reproductible n'est plus négligeable. Les profils verticaux de la reproductibilité indiquent que, dans l'ensemble étudié, le forçage par la surface ne contraint pas la circulation du modèle considérablement. La distribution géographique montre, pour les grandes échelles de toutes les variables, le même patron spatial de la reproductibilité: La reproductibilité est en général grande à proximité des frontières d'entrée et elle diminue en aval. La distribution spatiale de reproductibilité des petites échelles suit principalement celle des grandes échelles, mais les valeurs sont considérablement plus petites. De même, la variation temporelle de la reproductibilité des petites échelles est relativement bien synchronisée avec celle de la reproductibilité de grandes échelles. Cela implique que les reproductibilités des grandes et petites échelles sont liées. L'analyse des moyennes saisonnières montre que la composante reproductible domine le spectre entier. Cependant, aux échelles plus petites que 200km, la composante non-reproductible devient non négligeable. Additionnement, la variabilité spatiale du MRCC aux grandes échelles est en moyenne légèrement surestimée par rapport aux analyses objectives près de la surface. Par contre, elle est sous-estimée dans la troposphère supérieure. Ceci justifie le besoin d'appliquer le pilotage des grandes échelles à l'intérieur du domaine du MRCC. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Modèles Régionaux du Climat, Variabilité interne, « Dynamical downscaling ».
16

Analyse de performance d'un modèle régional du climat à simuler la variabilité de la précipitation associée au forçage ENSO dans les tropiques américaines

Tourigny, Étienne January 2008 (has links) (PDF)
La prévision d'anomalies saisonnières et intrasaisonnières des précipitations est utile dans des domaines tels que l'agriculture et la gestion de l'eau, ainsi que dans la prévention des catastrophes climatiques dans les pays tropicaux. Les anomalies de température de la surface de la mer (Sea Surface Temperature; SST) associées au forçage El Nino/Southern Oscillation (ENSO) constituent une source majeure de prévisibilité dans les tropiques. En effectuant une mise à l'échelle dynamique des prévisions de modèles de circulation générale (MCG), les modèles régionaux du climat (MRC), grâce à leur résolution accrue, pourraient permettre une bonne prévision de ces anomalies saisonnières et intrasaisonnières dans les tropiques. Cette étude constitue une évaluation de l'habilité d'un MRC (le Rossby Center Regional Atmospheric Model version 3; RCA) à effectuer une mise à l'échelle des anomalies de SST et circulation de grande échelle associées au forçage ENSO. RCA est configuré sur un domaine comprenant l'est de l'Océan Pacifique tropical et les tropiques américaines, et il est exécuté pour 27 années différentes pour la période 1979-2005. Le modèle utilise comme conditions aux frontières les SST observées et les réanalyses du European Centre for Medium-Range Weather Forecasts (ECMWF) pour la circulation de grande échelle. Nous étudions la performance de RCA à représenter les patrons régionaux de précipitation dans les tropiques américaines, en se concentrant sur la climatologie et la variabilité saisonnière et intrasaisonnière associée à ENSO. Les statistiques intrasaisonnières à l'étude sont la distribution de l'intensité de précipitation ainsi que les moments de transition entre les saisons sèches et humides. Deux articles acceptés pour publication dans la revue Tellus Series A : Dynamic Meteorology and Oceanography sont présentés ici, le premier se concentrant sur l'échelle saisonnière et le second sur l'échelle intrasaisonnière. Il est démontré que le modèle RCA reproduit la majorité des caractéristiques régionales de la précipitation ainsi que la variabilité de la précipitation associée à ENSO. Cette étude est une évaluation préliminaire pour le modèle RCA, qui devrait être suivie par une analyse plus poussée qui utiliserait des conditions aux frontières provenant d'un MCG. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Modèle Régional du Climat, ENSO, Variabilité interannuelle, Précipitation, Tropiques américaines.
17

Valeur ajoutée dans le modèle régional canadien du climat : comparaison de la précipitation aux échelles du modèle global canadien du climat

Di Luca, Alejandro January 2009 (has links) (PDF)
La modélisation du climat à haute résolution est nécessaire pour une meilleure compréhension des impacts des changements climatiques. Les modèles régionaux du climat (MRC) constituent une des principales sources de ce type de données puisque les modèles de circulation générale (MCG) ne fonctionnent toujours pas à une résolution suffisante pour répondre à ces besoins. Une fois que les MRC sont devenus des outils capables de générer des simulations physiquement réalistes, un effort important a été fait pour évaluer leur capacité de mise à l'échelle, en se concentrant principalement sur des variables moyennées temporellement. Cet effort ne s'est pas traduit par des améliorations sans équivoque par rapport aux simulations produites par les MCG. L'objectif principal de cette étude est d'examiner l'existence de la valeur ajoutée dans les simulations du modèle régional Canadien du climat (MRCC) par rapport à celles du modèle de circulation général canadien (MCGC) utilisé comme pilote. Dans cette première étape, il a été nécessaire d'analyser les échelles temporelles et spatiales communes aux deux modèles, le MRCC et le MCGC. Une comparaison est effectuée en ramenant les données à haute résolution des stations météorologiques et du MRCC à la résolution du MCGC. L'évaluation se base sur la comparaison des histogrammes d'intensités de précipitation et des 95e centiles des distributions afin de caractériser les événements extrêmes. On estime le degré de chevauchement entre les distributions simulées et observées en utilisant la mesure S définie par Perkins et al. (2007). Cette dernière reflète principalement le comportement des intensités faibles et modérées. Les résultats montrent que les statistiques quotidiennes des précipitations simulées par le MGCC et le MRCC sont généralement très similaires. En comparant les résultats des deux modèles, il n'existe aucune preuve de l'existence de la valeur ajoutée. En outre, pendant l'été, les données simulées par le modèle MCGC sont plus proches des observations que celles générées par le MRCC. Cette amélioration provient d'une meilleure simulation de la fréquence des jours secs. Pour les événements quotidiens les plus intenses, le MCGC produit aussi des résultats plus proches des valeurs observées que le MRCC. Ce dernier montre une sous-estimation constante de la fréquence d'occurrence des événements intenses. C'est aussi le cas dans les régions caractérisées par d'importants forçages de surface, où la différence entre les topographies des deux modèles pourrait avoir un impact. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : MRCC, Mise à l'échelle, Précipitation, Valeur ajoutée, Histogrammes.
18

Étude de sensibilité du climat arctique à l'effet rétroaction déshydratation-effet de serre : étude selon deux types de circulations atmosphériques

Peltier Champigny, Mariane January 2009 (has links) (PDF)
Le processus de la rétroaction déshydratation-effet de serre (RDES) est une hypothèse pour tenter d'expliquer la tendance au refroidissement observé durant l'hiver arctique. Un forçage radiatif indirect des aérosols, tel que l'acide sulfurique sur les aérosols, aurait pour effet d'entraver les processus de nucléation des cristaux, pour ainsi diminuer la concentration de noyaux glaçogènes (IN) (Blanchet et Girard, 1994) Tel que durant la transformation des masses d'air continentales en masses d'air polaires par refroidissement radiatif, le développement de cristaux de plus grande taille est favorisé. Le taux de précipitation est ainsi augmenté et la masse d'air se déshydrate plus rapidement (Girard, 1998). Par conséquent, la basse atmosphère arctique est déshydratée et refroidie par réduction de l'effet de serre. Cette étude consiste à effectuer une étude de sensibilité du climat arctique à l'effet RDES selon: 1) deux types de circulations atmosphériques (OAN+ et OAN-), 2) une faible acidification des aérosols se traduisant par un faible facteur de réduction (0,08) de la concentration de noyaux de glaciation (IN) (Borys el al., 1989), 3) une grande plage de température puisque l'on simule le mois de février et mars (nouveauté). Le modèle NARCM 3D est utilisé pour effectuer les simulations puisqu'il contient le module CAM, qui simule les processus physiques, les émissions et le transport des aérosols (Gong el al., 2003). Les résultats obtenus montrent que l'hypothèse de la RDES n'est pas vérifiée pour les 4 mois simulés (février et mars 1985 et 1995). Les facteurs composant la suite logique menant à l'effet de refroidissement associé au processus de la RDES ne sont pas réunis dans les zones où l'anomalie de température est négative. Deux facteurs sont défavorables aux processus de la RDES, soit une circulation atmosphérique davantage latitudinale pour les deux types de circulation, créant un faible apport d'aérosols en Arctique central, et soit un petit facteur de réduction des IN, ayant un effet plus grand dans les régions chaudes du domaine. Ces facteurs favorisent une stagnation des concentrations importantes des aérosols sulfatés dans les régions des mers de Barents et Kara. Le transport des aérosols vers l'Arctique central n'est pas favorisé pour les 4 mois simulés. Toutefois, pour les quatre mois d'étude, la réduction de la concentration de IN modifie la phase des nuages en augmentant la proportion de glace au détriment des gouttelettes. La baisse modeste de IN imposée a un effet plus grand pour les nuages relativement chauds du fait qu'ils contiennent déjà peu de IN. La baisse de la concentration de IN génère une baisse du taux de déposition de la vapeur d'eau sur les cristaux. Donc, le rapport saturant par rapport à la glace augmente, suivie d'une hausse de la concentration des gouttelettes et des cristaux. Par la suite, le taux d'évaporation des gouttelettes s'intensifie, engendrant ainsi une augmentation du CES et une diminution du CEL. Les nuages optiquement plus minces sont les plus sensibles aux altérations du contenu en eau liquide et solide des nuages. Ce processus induit une perte de la quantité d'eau totale dans les nuages, de même qu'une réduction du forçage radiatif des nuages d'une valeur moyenne de -3,3 W/m². ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Aérosols, Arctique, Noyaux de glaciation, Acidification, Phase des nuages.
19

Développement d'une stratégie de couplage NODEM-NARCM via le modèle océanique GOTM

Bensaid, Samira January 2008 (has links) (PDF)
Dans le cadre du développement d'un outil numérique couplé atmosphère-océan-biogéochimie permettant de lier les processus physiques et biogéochimiques et de mieux comprendre la rétroaction entre l'océan et l'atmosphère, nous avons couplé la version unidimensionnelle du modèle atmosphérique NARCM (MLC) au modèle océanique GOTM et au modèle biogéochimique NODEM. Le but de ce travail consistait, d'une part, à développer le modèle couplé NODEM-GOTM-MLC et, d'autre part, à valider et évaluer ce modèle couplé au niveau de l'Hydrostation S en mer des Sargasses durant l'année 1992. Ceci a été réalisé tout en étudiant l'ensemble des processus physiques et biogéochimiques influençant la production du DMS océanique et la ventilation du DMS vers l'atmosphère. Pour réaliser le couplage NODEM-GOTM-MLC, la stratégie suivie consistait au développement d'une interface permettant les échanges des champs atmosphériques et océaniques nécessaires au forçage de surface. Par ailleurs, afin de valider notre modèle couplé NODEM-GOTM-MLC, nous avons comparé, d'une part, les flux d'énergie en surface simulés par le modèle avec ceux de ré-analyses NCEP et, d'autre part, le cycle annuel de la Chla et du DMS(Pp) avec les données d'observations disponibles au niveau de l'Hydrostation S pour l'année 1992. Le résultat de cette recherche montre que le modèle couplé est capable de reproduire les principaux composants du flux net d'énergie d'une manière adéquate. De plus, par comparaison avec l'ancienne version NODEM-GOTM, les simulations des cycles du DMS et du DMSPp ont été améliorées suite au couplage avec MLC. Cette nouvelle version est notamment capable de simuler les trois principaux pics du DMS présents dans les données d'observations. Cette amélioration se traduit quantitativement lors du calcul des coefficients de détermination, qui confirment que cette nouvelle version est mieux corrélée aux observations que l'ancienne. Nous avons conclu notre travail en montrant que le modèle NODEM-GOTM-MLC capte la majorité des événements locaux qui se produisent à petite échelle et à l'échelle saisonnière, en dépit du fait qu'il possède des limitations liées aux erreurs des paramétrages du modèle et à l'incapacité du modèle ID à simuler certains types d'événements. Finalement, cette étude montre qu'une meilleure simulation de tous les composants du système climatique améliore la production du DMS océanique qui sera ventilé vers l'atmosphère. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : couplage, échanges atmosphère-océan-biogéochimique, DMS, NODEM-GOTM-MLC, version ID de NARCM
20

L'approche méthodologique à la validation d'une paramétrisation des aérosols et nuages en utilisant le simulateur des instruments d'Earthcare

Tatarevic, Aleksandra January 2009 (has links) (PDF)
La validation d'un modèle atmosphérique avec les observations satellitaires est basée sur les différentes techniques de télédétection employées afin de récupérer des propriétés physiques et optiques de composantes atmosphériques, notamment des nuages et des aérosols. Il est bien connu que le « retrieval approach » introduit de grandes incohérences en raison des hypothèses diverses portant sur le problème d'inversion où la principale difficulté est l'unicité de la solution. Autrement dit, le milieu analysé peut être composé d'un certain nombre de paramètres physiques inconnus dont les combinaisons différentes mènent au même signal de radiation. En plus du problème d'unicité de la solution, il y a plusieurs problèmes mathématiques reliés à l'existence et à la stabilité de la solution ainsi qu'à la manière dont la solution est construite. Par contre, il est bien connu que les prévisions des modèles atmosphériques souffrent d'incertitudes portant sur l'approche numérique qui limite leurs applications à la simulation de phénomènes naturels. Malgré ces difficultés, certains aspects des prévisions numériques peuvent être considérées comme réalistes parce qu'elles prennent explicitement en considération les principes de la physique, dont des processus microphysiques des nuages et des aérosols. Dans ce contexte, la motivation principale de cette recherche est d'évaluer le potentiel de la validation des paramétrisations physiques des aérosols et des nuages dans les modèles climatiques par le biais des mesures satellitaires (radar et lidar) en utilisant les « simulation vers l'avant ». Dans cette étude, nous utilisons une approche qui emploie le modèle Simulateur des instruments d'EarthCARE afin de reproduire des mesures satellitaires comparables à celles du radar et du lidar. Compte tenu du manque de mesures satellitaires, la validation se base sur les mesures directes du lidar et du radar de l'expérience APEX-E3 réalisées au printemps 2003 où les fréquences et la performance des systèmes d'observation correspondent à celles qui vont être mesurées par le satellite EarthCARE. Les caractéristiques microphysiques des nuages et des aérosols ainsi que l'état de l'atmosphère sont produites par le modèle atmosphérique NARCM. Elles sont ensuite converties en données de réflectivité pour le radar et en données de rétrodiffusion pour lidar en utilisant le Simulateur des Instruments d'EarthCARE. Pour terminer, les résultats sont comparés aux mesures de radar et de lidar de l'expérience APEX-E3. Les champs d'aérosols simulés avec NARCM indiquent un accord important avec ceux qui sont observés, mais les propriétés microphysiques des nuages simulées ne sont pas compatibles avec les observations. Autrement dit, les résultats montrent un large désaccord entre la réflectivité observée et la réflectivité simulée en dépit du fait que ses étendues verticales sont relativement similaires. Le nuage simulé est plus mince, situé à plus haute altitude et les valeurs maximales de réflectivité dans le nuage sont environ 5-10 dBZ inférieures à celles du nuage observé. De plus, le coefficient de la rétrodiffusion simulé (sans eau liquide) au-dessous de la base et au-dessus du sommet du nuage est nettement plus faible par rapport au coefficient de rétrodiffusion observé. Il y a également, à ces deux niveaux une plus grande quantité d'eau glacée observée que dans le cas simulé par NARCM. Si la présence d'eau liquide est incluse dans le Simulateur des lnstruments d'EarthCARE, les valeurs simulées du coefficient de rétrodiffusion sont de plusieurs ordres de grandeurs supérieures à celles observées, ce qui suggère que les valeurs du contenu en eau liquide simulées par NARCM sont surestimées d'une manière significative par rapport à toutes les altitudes où le nuage observé est présent. En conclusion, l'analyse montre que la paramétrisation microphysique de Lohmann (Lohmann et Roeckner, 1996) ne possède pas la capacité de produire les quantités glace observées dans le cas de cirrostratus. Il est également constaté que le contenu d'eau glacé de NARCM est sous-estimé, et que le contenu d'eau liquide est surestimé. Les résultats de cette étude confirment donc que l'utilisation du « forward approach » a un grand potentiel dans la validation de la paramétrisation des aérosols et des nuages. Par contre, des nouvelles vérifications seront nécessaires pour accomplir le processus de validation. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Validation, Rétrodiffusion de lidar, Réflectivité de radar, Simulations régionales des modèles atmosphériques.

Page generated in 0.0835 seconds