Spelling suggestions: "subject:"modèles semiparamétriques"" "subject:"modèles semiparamétrique""
1 |
Estimation récursive dans certains modèles de déformationFraysse, Philippe 04 July 2013 (has links) (PDF)
Cette thèse est consacrée à l'étude de certains modèles de déformation semi-paramétriques. Notre objectif est de proposer des méthodes récursives, issues d'algorithmes stochastiques, pour estimer les paramètres de ces modèles. Dans la première partie, on présente les outils théoriques existants qui nous seront utiles dans la deuxième partie. Dans un premier temps, on présente un panorama général sur les méthodes d'approximation stochastique, en se focalisant en particulier sur les algorithmes de Robbins-Monro et de Kiefer-Wolfowitz. Dans un second temps, on présente les méthodes à noyaux pour l'estimation de fonction de densité ou de régression. On s'intéresse plus particulièrement aux deux estimateurs à noyaux les plus courants qui sont l'estimateur de Parzen-Rosenblatt et l'estimateur de Nadaraya-Watson, en présentant les versions récursives de ces deux estimateurs.Dans la seconde partie, on présente tout d'abord une procédure d'estimation récursive semi-paramétrique du paramètre de translation et de la fonction de régression pour le modèle de translation dans la situation où la fonction de lien est périodique. On généralise ensuite ces techniques au modèle vectoriel de déformation à forme commune en estimant les paramètres de moyenne, de translation et d'échelle, ainsi que la fonction de régression. On s'intéresse finalement au modèle de déformation paramétrique de variables aléatoires dans le cadre où la déformation est connue à un paramètre réel près. Pour ces trois modèles, on établit la convergence presque sûre ainsi que la normalité asymptotique des estimateurs paramétriques et non paramétriques proposés. Enfin, on illustre numériquement le comportement de nos estimateurs sur des données simulées et des données réelles.
|
2 |
Quantiles univariés et multivariés, approches probabilistes et statistiques : applications radar / Univariate and multivariate quantiles, probabilistic and statistical approaches : radar applicationsDecurninge, Alexis 26 January 2015 (has links)
La description et l’estimation des modèles aussi bien univariés que multivariés impliquantdes distributions à queue lourde est un enjeu applicatif majeur. Les L-moments sontdevenus des outils classiques alternatifs aux moments centraux pour décrire les comportementsen dispersion, asymétrie, kurtosis d’une distribution univariée à queue lourde. Eneffet, contrairement aux moments centraux correspondants, ils sont bien définis dès quel’espérance de la distribution d’intérêt est finie. Les L-moments peuvent être vus comme laprojection de la fonction quantile sur une famille orthogonale de polynômes, récupérant lalinéarité inhérente aux quantiles. Nous estimerons dans un premier temps les paramètresde modèles semi paramétriques définis par des contraintes sur ces L-moments par des méthodesde minimisation de divergences.Nous proposons dans un second temps une généralisation des L-moments aux distributionsmultivariées qui passe par la définition d’un quantile multivarié défini comme untransport entre la distribution uniforme sur [0; 1]d et la distribution d’intérêt. Cela nouspermet de proposer des descripteurs pour des distributions multivariées adaptés à l’étudedes queues lourdes. Nous détaillons leurs expressions dans le cadre de modèles possédantdes paramètres de rotation.Enfin, nous proposons des M-estimateurs de la matrice de dispersion des distributions complexeselliptiques. Ces dernières forment un modèle multivarié semi-paramétrique contenantnotamment des distributions à queue lourde. Des M-estimateurs spécifiques adaptésaux distributions elliptiques avec une hypothèse supplémentaire de stationnarité sont égalementproposés. Les performances et la robustesse des estimateurs sont étudiées.Les signaux radar provenant de fouillis tels les fouillis de mer ou les fouillis de sol sontsouvent modélisés par des distributions elliptiques. Nous illustrerons les performances dedétecteurs construits à partir de l’estimation de la matrice de dispersion par les méthodesproposées pour différents scénarios radar pour lesquels la robustesse de la procédure d’estimationest cruciale. / The description and the estimation of univariate and multivariate models whose underlyingdistribution is heavy-tailed is a strategic challenge. L-moments have becomeclassical tools alternative to central moments for the description of dispersion, skewnessand kurtosis of a univariate heavy-tailed distribution. Indeed, contrary to correspondingcentral moments, they are well defined since the expectation of the distribution of interestis finite. L-moments can be seen as projections of the quantile function on a family oforthogonal polynomials. First, we will estimate parameters of semi-parametric modelsdefined by constraints on L-moments through divergence methods.We will then propose a generalization of L-moments for multivariate distributions using amultivariate quantile function defined as a transport of the uniform distribution on [0; 1]dand the distribution of interest. As their univariate versions, these multivariate L-momentsare adapted for the study of heavy-tailed distributions. We explicitly give their formulationsfor models with rotational parameters.Finally, we propose M-estimators of the scatter matrix of complex elliptical distributions.The family of these distributions form a multivariate semi-parametric model especiallycontaining heavy-tailed distributions. Specific M-estimators adapted to complex ellipticaldistribution with an additional assumption of stationarity are proposed. Performancesand robustness of introduced estimators are studied.Ground and sea clutters are often modelized by complex elliptical distributions in the fieldof radar processing. We illustrate performances of detectors built from estimators of thescatter matrix through proposed methods for different radar scenarios.
|
3 |
Estimation récursive dans certains modèles de déformation / Recursive estimation for some deformation modelsFraysse, Philippe 04 July 2013 (has links)
Cette thèse est consacrée à l'étude de certains modèles de déformation semi-paramétriques. Notre objectif est de proposer des méthodes récursives, issues d'algorithmes stochastiques, pour estimer les paramètres de ces modèles. Dans la première partie, on présente les outils théoriques existants qui nous seront utiles dans la deuxième partie. Dans un premier temps, on présente un panorama général sur les méthodes d'approximation stochastique, en se focalisant en particulier sur les algorithmes de Robbins-Monro et de Kiefer-Wolfowitz. Dans un second temps, on présente les méthodes à noyaux pour l'estimation de fonction de densité ou de régression. On s'intéresse plus particulièrement aux deux estimateurs à noyaux les plus courants qui sont l'estimateur de Parzen-Rosenblatt et l'estimateur de Nadaraya-Watson, en présentant les versions récursives de ces deux estimateurs.Dans la seconde partie, on présente tout d'abord une procédure d'estimation récursive semi-paramétrique du paramètre de translation et de la fonction de régression pour le modèle de translation dans la situation où la fonction de lien est périodique. On généralise ensuite ces techniques au modèle vectoriel de déformation à forme commune en estimant les paramètres de moyenne, de translation et d'échelle, ainsi que la fonction de régression. On s'intéresse finalement au modèle de déformation paramétrique de variables aléatoires dans le cadre où la déformation est connue à un paramètre réel près. Pour ces trois modèles, on établit la convergence presque sûre ainsi que la normalité asymptotique des estimateurs paramétriques et non paramétriques proposés. Enfin, on illustre numériquement le comportement de nos estimateurs sur des données simulées et des données réelles. / This thesis is devoted to the study of some semi-parametric deformation models.Our aim is to provide recursive methods, related to stochastic algorithms, in order to estimate the different parameters of the models. In the first part, we present the theoretical tools which we will use in the next part. On the one hand, we focus on stochastic approximation methods, in particular the Robbins-Monro algorithm and the Kiefer-Wolfowitz algorithm. On the other hand, we introduce kernel estimators in order to estimate a probability density function and a regression function. More particularly, we present the two most famous kernel estimators which are the one of Parzen-Rosenblatt and the one of Nadaraya-Watson. We also present their recursive version.In the second part, we present the results we obtained in this thesis.Firstly, we provide a recursive estimation method of the shift parameter and the regression function for the translation model in which the regression function is periodic. Secondly, we extend this estimation procedure to the shape invariant model, providing estimation of the height parameter, the translation parameter and the scale parameter, as well as the common shape function.Thirdly, we are interested in the parametric deformation model of random variables where the deformation is known and depending on an unknown parameter.For these three models, we establish the almost sure convergence and the asymptotic normality of each estimator. Finally, we numerically illustrate the asymptotic behaviour of our estimators on simulated data and on real data.
|
4 |
Estimation par ondelettes dans les modèles partiellement linéairesGannaz, Irène 07 December 2007 (has links) (PDF)
L'objet de cette thèse est d'apporter une contribution à l'inférence dans les modèles partiellement linéaires en appliquant des méthodes d'estimation adaptative par ondelettes. Ces modèles de régression semi-paramétriques distinguent des relations linéaires et des relations fonctionnelles, non paramétriques. L'inférence statistique consiste à estimer conjointement les deux types de prédicteurs, en prenant en compte leur possible corrélation. Une procédure des moindres carrés pénalisés permet d'introduire une estimation par ondelettes avec seuillage des coefficients de la partie fonctionnelle. Un parallèle est établi avec une estimation du paramètre de régression par des M-estimateurs usuels dans un modèle linéaire, les coefficients d'ondelettes de la partie fonctionnelle étant considérés comme des valeurs aberrantes. Une procédure d'estimation de la variance du bruit est aussi proposée. Des résultats relatifs aux propriétés asymptotiques des estimateurs de la partie linéaire et de la partie non paramétrique sont démontrés lorsque les observations de la partie fonctionnelle sont réalisées en des points équidistants. Sous des restrictions usuelles de corrélation entre les variables explicatives, les résultats sont presque optimaux (à un logarithme près). Des simulations permettent d'illustrer les comportements des estimateurs et de les comparer avec d'autres méthodes existantes. Une application sur des données d'IRM fonctionnelle a aussi été réalisée. Une dernière partie envisage le cadre d'un plan d'observation aléatoire de la partie fonctionnelle.
|
Page generated in 0.0411 seconds