Spelling suggestions: "subject:"modéles graphiques probabiliste"" "subject:"modéles graphiques probabilistic""
1 |
On the Links between Probabilistic Graphical Models and Submodular Optimisation / Liens entre modèles graphiques probabilistes et optimisation sous-modulaireKarri, Senanayak Sesh Kumar 27 September 2016 (has links)
L’entropie d’une distribution sur un ensemble de variables aléatoires discrètes est toujours bornée par l’entropie de la distribution factorisée correspondante. Cette propriété est due à la sous-modularité de l’entropie. Par ailleurs, les fonctions sous-modulaires sont une généralisation des fonctions de rang des matroïdes ; ainsi, les fonctions linéaires sur les polytopes associés peuvent être minimisées exactement par un algorithme glouton. Dans ce manuscrit, nous exploitons ces liens entre les structures des modèles graphiques et les fonctions sous-modulaires. Nous utilisons des algorithmes gloutons pour optimiser des fonctions linéaires sur des polytopes liés aux matroïdes graphiques et hypergraphiques pour apprendre la structure de modèles graphiques, tandis que nous utilisons des algorithmes d’inférence sur les graphes pour optimiser des fonctions sous-modulaires. La première contribution de cette thèse consiste à approcher par maximum de vraisemblance une distribution de probabilité par une distribution factorisable et de complexité algorithmique contrôlée. Comme cette complexité est exponentielle dans la largeur arborescente du graphe, notre but est d’apprendre un graphe décomposable avec une largeur arborescente bornée, ce qui est connu pour être NP-difficile. Nous posons ce problème comme un problème d’optimisation combinatoire et nous proposons une relaxation convexe basée sur les matroïdes graphiques et hypergraphiques. Ceci donne lieu à une solution approchée avec une bonne performance pratique. Pour la seconde contribution principale, nous utilisons le fait que l’entropie d’une distribution est toujours bornée par l’entropie de sa distribution factorisée associée, comme conséquence principale de la sous-modularité, permettant une généralisation à toutes les fonctions sous-modulaires de bornes basées sur les concepts de modèles graphiques. Un algorithme est développé pour maximiser les fonctions sous-modulaires, un autre problème NP-difficile, en maximisant ces bornes en utilisant des algorithmes d’inférence vibrationnels sur les graphes. En troisième contribution, nous proposons et analysons des algorithmes visant à minimiser des fonctions sous-modulaires pouvant s’écrire comme somme de fonctions plus simples. Nos algorithmes n’utilisent que des oracles de ces fonctions simple basés sur minimisation sous-modulaires et de variation totale de telle fonctions. / The entropy of a probability distribution on a set of discrete random variables is always bounded by the entropy of its factorisable counterpart. This is due to the submodularity of entropy on the set of discrete random variables. Submodular functions are also generalisation of matroid rank function; therefore, linear functions may be optimised on the associated polytopes exactly using a greedy algorithm. In this manuscript, we exploit these links between the structures of graphical models and submodular functions: we use greedy algorithms to optimise linear functions on the polytopes related to graphic and hypergraphic matroids for learning the structures of graphical models, while we use inference algorithms on graphs to optimise submodular functions.The first main contribution of the thesis aims at approximating a probabilistic distribution with a factorisable tractable distribution under the maximum likelihood framework. Since the tractability of exact inference is exponential in the treewidth of the decomposable graph, our goal is to learn bounded treewidth decomposable graphs, which is known to be NP-hard. We pose this as a combinatorial optimisation problem and provide convex relaxations based on graphic and hypergraphic matroids. This leads to an approximate solution with good empirical performance. In the second main contribution, we use the fact that the entropy of a probability distribution is always bounded by the entropy of its factorisable counterpart mainly as a consequence of submodularity. This property of entropy is generalised to all submodular functions and bounds based on graphical models are proposed. We refer to them as graph-based bounds. An algorithm is developped to maximise submodular functions, which is NPhard, by maximising the graph-based bound using variational inference algorithms on graphs. As third contribution, we propose and analyse algorithms aiming at minimizing submodular functions that can be written as sum of simple functions. Our algorithms only make use of submodular function minimisation and total variation oracles of simple functions.
|
Page generated in 0.0754 seconds