Spelling suggestions: "subject:"discrete optimisation"" "subject:"iscrete optimisation""
1 |
Lagrangian Bounding and Heuristics for Bi-Objective Discrete Optimisation / Lagrange-relaxation och heuristik för diskret tvåmålsoptimeringÅkerholm, Ida January 2022 (has links)
For larger instances of multi-objective optimisation problems, the exact Pareto frontier can be both difficult and time-consuming to calculate. There is a wide range of methods to find feasible solutions to such problems, but techniques for finding good optimistic bounds to compare the feasible solutions with are missing. In this study, we investigate the use of Lagrangian relaxation to create optimistic bounds to bi-objective optimisation problems with complicating side constraints. The aim is to develop an effective method to produce optimistic bounds that are closer to the Pareto frontier than the commonly used linear programming bounds. In order to use Lagrangian relaxation on the bi-objective problem, the objectives are combined using the weighted sum method. A Lagrangian dual function is then constructed by relaxing the complicating constraints and the subgradient method is used to optimise the dual problem in order to find an optimistic solution. By solving the single-objective problem for multiple weights, an optimistic bound to the Pareto frontier can be constructed. The subgradient method also includes a heuristic to find feasible solutions. The feasible solutions found by the heuristic form a pessimistic bound to the frontier. The method has been implemented and tested on several instances of a capacitated facility location problem with cost and CO2 emission as objectives. The results indicate that, by using Lagrangian relaxation, an optimistic bound close to the Pareto frontier can be found in a relatively short time. The heuristic used also manages to produce good pessimistic bounds, and hence the Pareto frontier can be tightly enclosed. The optimistic bounds found by Lagrangian relaxation are better and more consistent along the Pareto frontier than the bounds found by linear programming.
|
2 |
Lagrangian-informed mixed integer programming reformulationsKhuong, Paul Virak 12 1900 (has links)
La programmation linéaire en nombres entiers est une approche robuste
qui permet de résoudre rapidement de grandes instances de problèmes
d'optimisation discrète. Toutefois, les problèmes gagnent constamment
en complexité et imposent parfois de fortes limites sur le temps de
calcul. Il devient alors nécessaire de développer des méthodes
spécialisées afin de résoudre approximativement ces problèmes, tout en
calculant des bornes sur leurs valeurs optimales afin de prouver la
qualité des solutions obtenues.
Nous proposons d'explorer une approche de reformulation en nombres
entiers guidée par la relaxation lagrangienne. Après l'identification
d'une forte relaxation lagrangienne, un processus systématique permet
d'obtenir une seconde formulation en nombres entiers. Cette
reformulation, plus compacte que celle de Dantzig et Wolfe, comporte
exactement les mêmes solutions entières que la formulation initiale,
mais en améliore la borne linéaire: elle devient égale à la borne
lagrangienne.
L'approche de reformulation permet d'unifier et de généraliser des
formulations et des méthodes de borne connues. De plus, elle offre
une manière simple d'obtenir des reformulations de moins grandes
tailles en contrepartie de bornes plus faibles.
Ces reformulations demeurent de grandes tailles. C'est pourquoi nous
décrivons aussi des méthodes spécialisées pour en résoudre les
relaxations linéaires.
Finalement, nous appliquons l'approche de reformulation à deux
problèmes de localisation. Cela nous mène à de nouvelles formulations
pour ces problèmes; certaines sont de très grandes tailles, mais nos
méthodes de résolution spécialisées les rendent pratiques. / Integer linear programming is a robust and efficient approach to solve
large-scale instances of combinatorial problems. However, problems
constantly gain in complexity and sometimes impose strong constraints
on computation times. We must then develop specialised methods to
compute heuristic primal solutions to the problem and derive lower
bounds on the optimal value, and thus prove the quality of our primal
solutions.
We propose to guide a reformulation approach for mixed integer
programs with Lagrangian relaxations. After the identification of a
strong relaxation, a mechanical process leads to a second integer
formulation. This reformulation is equivalent to the initial one, but
its linear relaxation is equivalent to the strong Lagrangian dual.
We will show that the reformulation approach unifies and generalises
prior formulations and lower bounding approaches, and that it exposes
a simple mechanism to reduce the size of reformulations in return for
weaker bounds.
Nevertheless, our reformulations are large. We address this issue by
solving their linear relaxations with specialised methods.
Finally, we apply the reformulation approach to two location problems.
This yields novel formulations for both problems; some are very large
but, thanks to the aforementioned specialised methods, still
practical.
|
3 |
Lagrangian-informed mixed integer programming reformulationsKhuong, Paul Virak 12 1900 (has links)
La programmation linéaire en nombres entiers est une approche robuste
qui permet de résoudre rapidement de grandes instances de problèmes
d'optimisation discrète. Toutefois, les problèmes gagnent constamment
en complexité et imposent parfois de fortes limites sur le temps de
calcul. Il devient alors nécessaire de développer des méthodes
spécialisées afin de résoudre approximativement ces problèmes, tout en
calculant des bornes sur leurs valeurs optimales afin de prouver la
qualité des solutions obtenues.
Nous proposons d'explorer une approche de reformulation en nombres
entiers guidée par la relaxation lagrangienne. Après l'identification
d'une forte relaxation lagrangienne, un processus systématique permet
d'obtenir une seconde formulation en nombres entiers. Cette
reformulation, plus compacte que celle de Dantzig et Wolfe, comporte
exactement les mêmes solutions entières que la formulation initiale,
mais en améliore la borne linéaire: elle devient égale à la borne
lagrangienne.
L'approche de reformulation permet d'unifier et de généraliser des
formulations et des méthodes de borne connues. De plus, elle offre
une manière simple d'obtenir des reformulations de moins grandes
tailles en contrepartie de bornes plus faibles.
Ces reformulations demeurent de grandes tailles. C'est pourquoi nous
décrivons aussi des méthodes spécialisées pour en résoudre les
relaxations linéaires.
Finalement, nous appliquons l'approche de reformulation à deux
problèmes de localisation. Cela nous mène à de nouvelles formulations
pour ces problèmes; certaines sont de très grandes tailles, mais nos
méthodes de résolution spécialisées les rendent pratiques. / Integer linear programming is a robust and efficient approach to solve
large-scale instances of combinatorial problems. However, problems
constantly gain in complexity and sometimes impose strong constraints
on computation times. We must then develop specialised methods to
compute heuristic primal solutions to the problem and derive lower
bounds on the optimal value, and thus prove the quality of our primal
solutions.
We propose to guide a reformulation approach for mixed integer
programs with Lagrangian relaxations. After the identification of a
strong relaxation, a mechanical process leads to a second integer
formulation. This reformulation is equivalent to the initial one, but
its linear relaxation is equivalent to the strong Lagrangian dual.
We will show that the reformulation approach unifies and generalises
prior formulations and lower bounding approaches, and that it exposes
a simple mechanism to reduce the size of reformulations in return for
weaker bounds.
Nevertheless, our reformulations are large. We address this issue by
solving their linear relaxations with specialised methods.
Finally, we apply the reformulation approach to two location problems.
This yields novel formulations for both problems; some are very large
but, thanks to the aforementioned specialised methods, still
practical.
|
4 |
On the Links between Probabilistic Graphical Models and Submodular Optimisation / Liens entre modèles graphiques probabilistes et optimisation sous-modulaireKarri, Senanayak Sesh Kumar 27 September 2016 (has links)
L’entropie d’une distribution sur un ensemble de variables aléatoires discrètes est toujours bornée par l’entropie de la distribution factorisée correspondante. Cette propriété est due à la sous-modularité de l’entropie. Par ailleurs, les fonctions sous-modulaires sont une généralisation des fonctions de rang des matroïdes ; ainsi, les fonctions linéaires sur les polytopes associés peuvent être minimisées exactement par un algorithme glouton. Dans ce manuscrit, nous exploitons ces liens entre les structures des modèles graphiques et les fonctions sous-modulaires. Nous utilisons des algorithmes gloutons pour optimiser des fonctions linéaires sur des polytopes liés aux matroïdes graphiques et hypergraphiques pour apprendre la structure de modèles graphiques, tandis que nous utilisons des algorithmes d’inférence sur les graphes pour optimiser des fonctions sous-modulaires. La première contribution de cette thèse consiste à approcher par maximum de vraisemblance une distribution de probabilité par une distribution factorisable et de complexité algorithmique contrôlée. Comme cette complexité est exponentielle dans la largeur arborescente du graphe, notre but est d’apprendre un graphe décomposable avec une largeur arborescente bornée, ce qui est connu pour être NP-difficile. Nous posons ce problème comme un problème d’optimisation combinatoire et nous proposons une relaxation convexe basée sur les matroïdes graphiques et hypergraphiques. Ceci donne lieu à une solution approchée avec une bonne performance pratique. Pour la seconde contribution principale, nous utilisons le fait que l’entropie d’une distribution est toujours bornée par l’entropie de sa distribution factorisée associée, comme conséquence principale de la sous-modularité, permettant une généralisation à toutes les fonctions sous-modulaires de bornes basées sur les concepts de modèles graphiques. Un algorithme est développé pour maximiser les fonctions sous-modulaires, un autre problème NP-difficile, en maximisant ces bornes en utilisant des algorithmes d’inférence vibrationnels sur les graphes. En troisième contribution, nous proposons et analysons des algorithmes visant à minimiser des fonctions sous-modulaires pouvant s’écrire comme somme de fonctions plus simples. Nos algorithmes n’utilisent que des oracles de ces fonctions simple basés sur minimisation sous-modulaires et de variation totale de telle fonctions. / The entropy of a probability distribution on a set of discrete random variables is always bounded by the entropy of its factorisable counterpart. This is due to the submodularity of entropy on the set of discrete random variables. Submodular functions are also generalisation of matroid rank function; therefore, linear functions may be optimised on the associated polytopes exactly using a greedy algorithm. In this manuscript, we exploit these links between the structures of graphical models and submodular functions: we use greedy algorithms to optimise linear functions on the polytopes related to graphic and hypergraphic matroids for learning the structures of graphical models, while we use inference algorithms on graphs to optimise submodular functions.The first main contribution of the thesis aims at approximating a probabilistic distribution with a factorisable tractable distribution under the maximum likelihood framework. Since the tractability of exact inference is exponential in the treewidth of the decomposable graph, our goal is to learn bounded treewidth decomposable graphs, which is known to be NP-hard. We pose this as a combinatorial optimisation problem and provide convex relaxations based on graphic and hypergraphic matroids. This leads to an approximate solution with good empirical performance. In the second main contribution, we use the fact that the entropy of a probability distribution is always bounded by the entropy of its factorisable counterpart mainly as a consequence of submodularity. This property of entropy is generalised to all submodular functions and bounds based on graphical models are proposed. We refer to them as graph-based bounds. An algorithm is developped to maximise submodular functions, which is NPhard, by maximising the graph-based bound using variational inference algorithms on graphs. As third contribution, we propose and analyse algorithms aiming at minimizing submodular functions that can be written as sum of simple functions. Our algorithms only make use of submodular function minimisation and total variation oracles of simple functions.
|
Page generated in 0.0864 seconds