Spelling suggestions: "subject:"modal binteractions"" "subject:"modal counteractions""
1 |
Nonlinear Response of Cantilever BeamsArafat, Haider Nabhan 24 April 1999 (has links)
The nonlinear nonplanar steady-state responses of cantilever beams to direct and parametric harmonic excitations are investigated using perturbation techniques. Modal interactions between the bending-bending and bending-bending-twisting motions are studied. Using a variational formulation, we obtained the governing equations of motion and associated boundary conditions for monoclinic composite and isotropic metallic inextensional beams. The method of multiple scales is applied either to the governing system of equations and associated boundary conditions or to the Lagrangian and virtual-work term to determine the modulation equations that govern the slow dynamics of the responses. These equations are shown to exhibit symmetry properties, reflecting the conservative nature of the beams in the absence of damping.
It is popular to first discretize the partial-differential equations of motion and then apply a perturbation technique to the resulting ordinary-differential equations to determine the modulation equations. Due to the presence of quadratic as well as cubic nonlinearities in the governing system for the bending-bending-twisting oscillations of beams, it is shown that this approach leads to erroneous results. Furthermore, the symmetries are lost in the resulting equations.
Nontrivial fixed points of the modulation equations correspond, generally, to periodic responses of the beams, whereas limit-cycle solutions of the modulation equations correspond to aperiodic responses of the beams. A pseudo-arclength scheme is used to determine the fixed points and their stability. In some cases, they are found to undergo Hopf bifurcations, which result in limit cycles. A combination of a long-time integration, a two-point boundary-value continuation scheme, and Floquet theory is used to determine in detail branches of periodic and chaotic solutions and assess their stability. The limit cycles undergo symmetry-breaking, cyclic-fold, and period-doubling bifurcations. The chaotic attractors undergo attractor-merging and boundary crises as well as explosive bifurcations.
For certain cases, it is determined that the response of a beam to a high-frequency excitation is not necessarily a high-frequency low-amplitude oscillation. In fact, low-frequency high-amplitude components that dominate the responses may be activated by resonant and nonresonant mechanisms. In such cases, the overall oscillations of the beam may be significantly large and cannot be neglected. / Ph. D.
|
2 |
Nonlinear Vibrations of Cantilever Beams and PlatesMalatkar, Pramod 17 July 2003 (has links)
A study of the nonlinear vibrations of metallic cantilever beams and plates subjected to transverse harmonic excitations is presented. Both experimental and theoretical results are presented. The primary focus is however on the transfer of energy between widely spaced modes via modulation. This phenomenon is studied both in the presence and absence of a one-to-one internal resonance. Reduced-order models using Galerkin discretization are also developed to predict experimentally observed motions. A good qualitative agreement is obtained between the experimental and numerical results.
Experimentally the energy transfer between widely spaced modes is found to be a function of the closeness of the modulation frequency to the natural frequency of the first mode. The modulation frequency, which depends on various parameters like the amplitude and frequency of excitation, damping factors, etc., has to be near the natural frequency of the low-frequency mode for significant transfer of energy from the directly excited high-frequency mode to the low-frequency mode.
An experimental parametric identification technique is developed for estimating the linear and nonlinear damping coefficients and effective nonlinearity of a metallic cantilever beam. This method is applicable to any single-degree-of-freedom nonlinear system with weak cubic geometric and inertia nonlinearities. In addition, two methods, based on the elimination theory of polynomials, are proposed for determining both the critical forcing amplitude as well as the jump frequencies in the case of single-degree-of-freedom nonlinear systems.
An experimental study of the response of a rectangular, aluminum cantilever plate to transverse harmonic excitations is also conducted. Various nonlinear dynamic phenomena, like two-to-one and three-to-one internal resonances, external combination resonance, energy transfer between widely spaced modes via modulation, period-doubled motions, and chaos, are demonstrated using a single plate. It is again shown that the closeness of the modulation frequency to the natural frequency of the first mode dictates the energy transfer between widely spaced modes. / Ph. D.
|
3 |
Modélisation et optimisation d'un récupérateur d'énergie vibratoire électromagnétique non-linéaire multimodale / Modeling and optimization of a multimodal nonlinear electromagnetic vibratory energy recoveryAbed, Issam 09 July 2016 (has links)
Afin d’accomplir les promesses des récupérateurs d’énergie vibratoire (VEHs) qui s’imposent comme unealternative majeure pour garantir l’autonomie des capteurs pour la surveillance, leurs performances en termes debande passante et puissance récupérable doivent être améliorées. Dans cette thèse, à la différence des VEHs classiqueslinéaires et multimodales ou non-linéaires et mono-fréquence, on propose une approche de récupérationd’énergie basée sur des réseaux d’aimants couplés en lévitation ou élastiquement guidés combinant les avantagesdes non-linéarités et des interactions modales. Une étude bibliographique sur les récupérateurs d’énergie vibratoireest effectuée. En particulier, les inconvénients des récupérateurs linéaires et les techniques de réglage de fréquencesont présentées. De plus, les méthodes non-linéaires sont présentées pour définir une procédure de résolution permettantl’étude de la dynamique des récupérateurs non-linéaires. Les équations du mouvement qui contiennentla non-linéarité magnétique, la non-linéarité géométrique et l’amortissement électromagnétique sont résolus enutilisant la méthode de la balance harmonique couplée avec la méthode asymptotique numérique. Une méthodologied’optimisation multi-objectif basée sur l’algorithme Non Sorting Genetic Algorithm est appliquée afin decalculer les solutions optimales pour maximiser les performances du récupérateur d’énergie. Grâce au couplagenon-linéaire et aux interactions modales, pour le cas des trois aimants couplés, l’approche proposée permet la récupérationde l’énergie vibratoire dans la gamme fréquentielle 4;6 - 14;5 Hz, avec une bande passante d’environ190 % et une puissance normalisée de 20,2 mWcm-3g-2. / In order to accomplish the promises of vibration energy harvesters (VEHs) as a major alternative to powersensors, their performances in terms of frequency bandwidth and harvested power have to be improved. In thisthesis, unlike classical VEHs either linear and multimodal or nonlinear and mono-frequency, we propose a vibrationenergy harvesting approach based on arrays of coupled levitated or elastically guided magnets combining thebenefits of nonlinearities and modal interactions.A review of VEHs is carried out. Particularly, the design issues of linear harvesters are addressed and frequencytuning techniques are presented. A review of nonlinear methods is also presented in order to define a solving procedureenabling the investigation of the dynamics of nonlinear VEHs. The equations of motion which include themagnetic nonlinearity, the geometric nonlinearity and the electromagnetic damping are solved using the harmonicbalance method coupled with the asymptotic numerical method. A multi-objective optimization procedure isintroduced and performed using a non-dominated sorting genetic algorithm for the cases of small magnet arraysin order to select the optimal solutions in term of performances by bringing the eigenmodes close to each other interms of frequencies and amplitudes. Thanks to the nonlinear coupling and the modal interactions even for onlythree coupled magnets, the proposed method enable harvesting the vibration energy in the operating frequencyrange of 4.6–14.5 Hz, with a bandwidth of 190 % and a normalized power of 20:2mWcm-3g-2.
|
4 |
Collective dynamics of weakly coupled nonlinear periodic structures / Dynamique collective des structures périodiques non-linéaires faiblement coupléesBitar, Diala 21 February 2017 (has links)
Bien que la dynamique des réseaux périodiques non-linéaires ait été investiguée dans les domainestemporel et fréquentiel, il existe un réel besoin d’identifier des relations pratiques avec lephénomène de la localisation d’énergie en termes d’interactions modales et topologies de bifurcation.L’objectif principal de cette thèse consiste à exploiter le phénomène de la localisation pourmodéliser la dynamique collective d’un réseau périodique de résonateurs non-linéaires faiblementcouplés.Un modèle analytico-numérique a été développé pour étudier la dynamique collective d’unréseau périodique d’oscillateurs non-linéaires couplés sous excitations simultanées primaire et paramétrique,où les interactions modales, les topologies de bifurcations et les bassins d’attraction ontété analysés. Des réseaux de pendules et de nano-poutres couplés électrostatiquement ont étéinvestigués sous excitation extérieure et paramétrique, respectivement. Il a été démontré qu’enaugmentant le nombre d’oscillateurs, le nombre de solutions multimodales et la distribution desbassins d’attraction des branches résonantes augmentent. Ce modèle a été étendu pour investiguerla dynamique collective des réseaux 2D de pendules couplés et de billes sphériques en compressionsous excitation à la base, où la dynamique collective est plus riche avec des amplitudes de vibrationplus importantes et des bandes passantes plus larges. Une deuxième investigation de cettethèse consiste à identifier les solitons associés à la dynamique collective d’un réseau périodique etd’étudier sa stabilité. / Although the dynamics of periodic nonlinear lattices was thoroughly investigated in the frequencyand time-space domains, there is a real need to perform profound analysis of the collectivedynamics of such systems in order to identify practical relations with the nonlinear energy localizationphenomenon in terms of modal interactions and bifurcation topologies. The principal goal ofthis thesis consists in exploring the localization phenomenon for modeling the collective dynamicsof periodic arrays of weakly coupled nonlinear resonators.An analytico-numerical model has been developed in order to study the collective dynamics ofa periodic coupled nonlinear oscillators array under simultaneous primary and parametric excitations,where the bifurcation topologies, the modal interactions and the basins of attraction havebeen analyzed. Arrays of coupled pendulums and electrostatically coupled nanobeams under externaland parametric excitations respectively were considered. It is shown that by increasing thenumber of coupled oscillators, the number of multimodal solutions and the distribution of the basinsof attraction of the resonant solutions increase. The model was extended to investigate the collectivedynamics of periodic nonlinear 2D arrays of coupled pendulums and spherical particles underbase excitation, leading to additional features, mainly larger bandwidth and important vibrationalamplitudes. A second investigation of this thesis consists in identifying the solitons associated tothe collective nonlinear dynamics of the considered arrays of periodic structures and the study oftheir stability.
|
5 |
La synesthésie comme source d’inspiration extra-musicale dans mon oeuvreLachance, Tom 08 1900 (has links)
Ce mémoire aborde la manière dont ma synesthésie agit comme une source d’inspiration lors
de la composition d’oeuvres dans le cadre de ma maîtrise. Une première partie est d’abord consacré
à expliquer la définition de la synesthésie, à retracer l’historique de son utilisation en musique et à
faire état de la recherche actuelle à son sujet. Une seconde partie présente ensuite quatre principales
oeuvres que j’ai composées durant ma maîtrise : Blizzard sylvestre, háptô, Multillusions et
Stellogonie. Chacune de ces pièces est réalisée en explorant un angle différent de la synesthésie et
leurs contexte de création, forme, matériaux thématiques et organisations des hauteurs et
rythmiques sont analysés en fonction de cette recherche. D’autres pièces ayant été composées dans
un cadre extra-académique ou d’un séminaire sont aussi brièvement présentées afin d’avoir un
point de vue global de ma démarche artistique. / This paper addresses how my synesthesia acts as a source of inspiration when composing musical works as part of my master. A first part is dedicated to defining synesthesia and retracing the history of its application in music and to reviewing the current state of the research on the matter. Then, a second part presents four main works that I composed during my master. Each one of them is realized with a different angle to the synesthesia and their context of creation, formal structure, thematic material and pitch and rhythm organizations are analyzed according to this research. Other pieces composed for an extra-academic purpose or in a seminar are also presented briefly to give a global point of view of my artistic approach.
|
Page generated in 0.1049 seconds