• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bestimmung effektiver Materialkennwerte mit Hilfe modaler Ansätze bei unsicheren Eingangsgrößen

Kreuter, Daniel Christopher 12 January 2016 (has links) (PDF)
In dieser Arbeit wird für Strukturen, die im makroskopischen aufgrund unterschiedlicher Materialeigenschaften oder komplexer Geometrien eine hohe Netzfeinheit für Finite-Elemente-Berechnungen benötigen, eine neue Möglichkeit zur Berechnung effektiver Materialkennwerte vorgestellt. Durch einen modalen Ansatz, bei dem, je nach Struktur analytisch oder numerisch, mit Hilfe der modalen Kennwerte die Formänderungsenergie eines repräsentativen Volumens der Originalstruktur mit der Formänderungsenergie eines äquivalenten homogen Vergleichsvolumens verglichen wird, können effektive Materialkennwerte ermittelt und daran anschließend eine Finite-Elemente-Berechnung mit einem im Vergleich zum Originalmodell sehr viel gröberen Netz durchgeführt werden, was eine enorme Zeiteinsparung mit sich bringt. Weiterhin enthält die vorgestellte Methode die Möglichkeit, unsichere Eingabeparameter wie Geometrieabmessungen oder Materialkennwerte mit Hilfe der polynomialen Chaos Expansion zu approximieren, um Möglichkeiten zur Aussage bzgl. der daraus resultierenden Verteilungen modaler Kenngrößen auf eine schnelle und effektive Weise zu gewinnen.
2

Bestimmung effektiver Materialkennwerte mit Hilfe modaler Ansätze bei unsicheren Eingangsgrößen

Kreuter, Daniel Christopher 24 July 2015 (has links)
In dieser Arbeit wird für Strukturen, die im makroskopischen aufgrund unterschiedlicher Materialeigenschaften oder komplexer Geometrien eine hohe Netzfeinheit für Finite-Elemente-Berechnungen benötigen, eine neue Möglichkeit zur Berechnung effektiver Materialkennwerte vorgestellt. Durch einen modalen Ansatz, bei dem, je nach Struktur analytisch oder numerisch, mit Hilfe der modalen Kennwerte die Formänderungsenergie eines repräsentativen Volumens der Originalstruktur mit der Formänderungsenergie eines äquivalenten homogen Vergleichsvolumens verglichen wird, können effektive Materialkennwerte ermittelt und daran anschließend eine Finite-Elemente-Berechnung mit einem im Vergleich zum Originalmodell sehr viel gröberen Netz durchgeführt werden, was eine enorme Zeiteinsparung mit sich bringt. Weiterhin enthält die vorgestellte Methode die Möglichkeit, unsichere Eingabeparameter wie Geometrieabmessungen oder Materialkennwerte mit Hilfe der polynomialen Chaos Expansion zu approximieren, um Möglichkeiten zur Aussage bzgl. der daraus resultierenden Verteilungen modaler Kenngrößen auf eine schnelle und effektive Weise zu gewinnen.

Page generated in 0.1316 seconds