• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • 1
  • 1
  • Tagged with
  • 17
  • 17
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An integrated approach to three-dimensional computer modelling of sedimentary basins

Richards, Andrew John January 2000 (has links)
No description available.
2

Managing the interdisciplinary requirements of 3D geological models.

Riordan, Sarah J. January 2009 (has links)
Despite increasing computer power, the requirement to upscale 3D geological models for dynamic reservoir simulation purposes is likely to remain in many commercial environments. This study established that there is a relationship between sandbody size, cell size and changes to predictions of reservoir production as grids are upscaled. The concept of a cell width to sandbody width ratio (CSWR) was developed to allow the comparison of changes in reservoir performance as grids are upscaled. A case study of the Flounder Field in the Gippsland Basin resulted in the interpretation of three depositional environments in the intra-Latrobe reservoir interval. The sandbody dimensions associated with these depositional environments were used to build a series of 3D geological models. These were upscaled vertically and horizontally to numerous grid cell sizes. Results from over 1400 dynamic models indicate that if the CSWR is kept below 0.3 there will be a strong correlation between the average production from the upscaled grids compared to those of a much finer grid, and there will be less than 10% variation in average total field production. If the CSWR is between 0.3 and 1, there could be up to 30% difference, and once the CSWR exceeds 1.0 there is only a weak relationship between the results from upscaled grids and those of finer grids. As grids are upscaled the morphology of bodies in facies models changes, the distribution of petrophysical properties is attenuated and the structure is smoothed. All these factors result in a simplification of the fluid flow pathways through a model. Significant loss of morphology occurs when cells are upscaled to more than a half the width of the reservoir body being modelled. A simple rule of thumb is established — if the geological features of a model cannot be recognised when looking at a layer in the upscaled grid, the properties of the upscaled grid are unlikely to be similar to those of the original grid and the predictions of dynamic models may vary significantly from those of a finer grid. This understanding of the influence of sandbody size on the behaviour of upscaled dynamic models can be used in the planning stages of a reservoir modelling project. Two simple charts have been created. The first chart is for calculating the approximate number of cells in a model before it is built. The second chart is for comparing the proposed cell size against the CWSR, so that the predicted discrepancy between the ultimate production from the upscaled grid and one with much smaller cells can be assessed. These two charts enhance discussion between all interested disciplines regarding the potential dimensions of both static and upscaled dynamic models during the planning stage of a modelling project, and how that may influence the results of dynamic modelling. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1375309 / Thesis (Ph.D.) - University of Adelaide, Australian School of Petroleum, 2009
3

Managing the interdisciplinary requirements of 3D geological models.

Riordan, Sarah J. January 2009 (has links)
Despite increasing computer power, the requirement to upscale 3D geological models for dynamic reservoir simulation purposes is likely to remain in many commercial environments. This study established that there is a relationship between sandbody size, cell size and changes to predictions of reservoir production as grids are upscaled. The concept of a cell width to sandbody width ratio (CSWR) was developed to allow the comparison of changes in reservoir performance as grids are upscaled. A case study of the Flounder Field in the Gippsland Basin resulted in the interpretation of three depositional environments in the intra-Latrobe reservoir interval. The sandbody dimensions associated with these depositional environments were used to build a series of 3D geological models. These were upscaled vertically and horizontally to numerous grid cell sizes. Results from over 1400 dynamic models indicate that if the CSWR is kept below 0.3 there will be a strong correlation between the average production from the upscaled grids compared to those of a much finer grid, and there will be less than 10% variation in average total field production. If the CSWR is between 0.3 and 1, there could be up to 30% difference, and once the CSWR exceeds 1.0 there is only a weak relationship between the results from upscaled grids and those of finer grids. As grids are upscaled the morphology of bodies in facies models changes, the distribution of petrophysical properties is attenuated and the structure is smoothed. All these factors result in a simplification of the fluid flow pathways through a model. Significant loss of morphology occurs when cells are upscaled to more than a half the width of the reservoir body being modelled. A simple rule of thumb is established — if the geological features of a model cannot be recognised when looking at a layer in the upscaled grid, the properties of the upscaled grid are unlikely to be similar to those of the original grid and the predictions of dynamic models may vary significantly from those of a finer grid. This understanding of the influence of sandbody size on the behaviour of upscaled dynamic models can be used in the planning stages of a reservoir modelling project. Two simple charts have been created. The first chart is for calculating the approximate number of cells in a model before it is built. The second chart is for comparing the proposed cell size against the CWSR, so that the predicted discrepancy between the ultimate production from the upscaled grid and one with much smaller cells can be assessed. These two charts enhance discussion between all interested disciplines regarding the potential dimensions of both static and upscaled dynamic models during the planning stage of a modelling project, and how that may influence the results of dynamic modelling. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1375309 / Thesis (Ph.D.) - University of Adelaide, Australian School of Petroleum, 2009
4

Výroba dílů technologií DMLS a jejich porovnání s jinými konvenčními technologiemi z hlediska ekonomické náročnosti / Production of parts by DMLS technology and their comparison with other conventional technologies in terms of economic performance

Sekerka, Vít January 2011 (has links)
This diploma thesis presents a technology based on the gradual smelting of fine layers of metal powder by using a laser beam. It explains and describes basic terminology related to the Rapid Prototyping technology, its division and practical usage. A part of the thesis is also the fabrication of several prototype parts by Direct Metal Laser Sintering including the economical comparison of their fabrication with other conventional technologies.
5

Three-dimensional numerical model for wave-induced seabed response around mono-pile

Sui, T., Zhang, C., Guo, Yakun, Zheng, J.H., Jeng, D-S., Zhang, J.S., Zhang, W. 12 May 2015 (has links)
Yes / In this study, a new three-dimensional (3-D) model was developed to provide better understanding of the mechanism for wave-induced seabed response around mono-pile. Based on poro-elastic theory, the fully dynamic (FD) formulations were adopted in the present model to simulate pore water pressure, soil stresses, displacements of both soil and mono-pile. Good agreement between numerical simulation and experimental results was obtained. Based on parametric study, numerical results indicated: (1) wave diffraction and reflection have significant effects on pore water pressure and soil displacements around mono-pile; (2) the most sensitive position for seabed parameter to pore water pressure around mono-pile locates in front of mono-pile while the least sensitive position is at the position of angle 3π/4 with respect to the incident wave direction; and (3) the increase of mono-pile horizontal displacement corresponds to the increase of wave height and the decrease of seabed Young's modulus. / National Science Fund for Distinguished Young Scholars (51425901), the National Natural Science Foundation of China (51209082, 51379071, 41176073), the Specialized Research Fund for the Doctoral Program of Higher Education of China (20120094120006, 20130094110014), the 111 project (B12032), the 333 project of Jiangsu Province (2013Ⅲ-1882)
6

Numerické modelování hydraulických ztrát v potrubí ve 3D / Numerical Modelling of Energy Losses in Pipes in 3D

Kacálková, Eva January 2016 (has links)
The bachelor´s thesis deals with numerical modelling of energy losses in pipes in 3D. It shows the process of creation of mathematical model, used mathematical equations and numerical methods of their solution. The theory is applied on the creation of pipe model and their energy losses with using different turbulent models.
7

Contribution à la biomécanique de la régénération osseuse : modélisation, simulation et applications / Contribution to the biomechanics of bone regeneration : modeling, simulation and applications

Spingarn, Camille 11 June 2019 (has links)
Cette thèse traite de la modélisation du remodelage osseux. Nous présentons tout d'abord un modèle général continu tenant compte de la réponse cellulaire à un stimulus mécanique. Ce modèle est appliqué à des géométries 2D et 3D macroscopiques afin de se rapprocher des problématiques réelles, ainsi que sur des géométries mésoscopiques d'os trabécullaires en 2D. Cependant la complexité du remodelage osseux ne permet pas d'avoir une approche unique de modélisation. Ainsi, dans un second temps, le cas particulier du remodelage osseux orthodontique est étudié. Un nouveau modèle spécifique est développé tenant compte de l'influence du ligament parodontal sur le remodelage osseux, et intégrant l'influence du taux d'oxygène qui contrôle les évolutions de densités cellulaires. Des données expérimentales in vitro sont extraites de la littérature et servent de données d'entrées du modèle développé afin d'obtenir l'évolution de la densité osseuse alentours d'une racine dentaire cylindrique en 3D. / This work deals with modelization of bane remodeling. We present first a madel thal accounts for the cellular res panse to a mechanical stimulus in a general case at a continuous scale. This madel is applied to 2D and 3D geometries at macroscopic scale to mimic real cases, as weil as 2D trabecular-type geometries at mesoscopic scale. However, the complexity of bane remodeling does not allow a unique approach. Th us, the thesis work is focused on the particular case of orthodontie bane re mode ling. A new specifie madel is developed accounting for the influence of the periodontal ligament on orthodontie bane remodeling by integrating the oxygen concentration effect controling the evolutions of cellular densities. The cellular experimental data in vitro are extracted from the literature, and serve as input data of the developed madel in arder to ablain the evolution of bane density around the root of a 3D cylindrical tooth.
8

Interactive Volume Rendering For Medical Images

Orhun, Koray 01 September 2004 (has links) (PDF)
Volume rendering is one of the branches of scientific visualization. Its popularity has grown in the recent years, and due to the increase in the computation speed of the graphics hardware of the desktop systems, became more and more accessible. Visualizing volumetric datasets using volume rendering technique requires a large amount of trilinear interpolation operations that are computationally expensive. This situation used to restrict volume rendering methods to be used only in high-end graphics workstations or with special-purpose hardware. In this thesis, an application tool has been developed using hardware accelerated volume rendering techniques on commercial graphics processing devices. This implementation has been developed with a 3D texture based approach using bump mapping for building an illumination model with OpenGL API. The aim of this work is to propose visualization methods and tools for rendering medical image datasets at interactive rates. The methods and tool are validated and compared with a commercially available software.
9

Použití modelů zhotovených technologii 3D tisku při výrobě odlitků do bentonitových forem na formovací lince / Using of 3D printed patterns for mass production of castings on "green sand" moulding lines

Vašek, Vojtěch January 2017 (has links)
Shortening of the time required to make first product after demand is a crucial factor in every field of industry, not excluding the foundry. To lower this delay, there are rapid prototyping methods. The aim of this thesis is to execute an experiment and then evaluate possibilities of using patterns made by 3D FDM printer on an automatic molding line.
10

Numerické modelování proudového pole s odtržením / Computational modeling of flow field with separation

Šamša, Petr January 2018 (has links)
This diploma thesis is considering with computational modeling of flow field with separation. In the first part it contains theoretical bases of flow field computational modeling with RANS models equations and wall treatment modeling approaches included. There is also flow separation in asymmetric plane diffuser modeling described in the thesis where the most suitable turbulent model and the proper mesh parameters for the successful flow separation modeling should be chosen. Next the chosen turbulent model and parameters verification via flow separation modeling on the asymmetric 3D diffuser mesh. That analysis should ensure if the chosen turbulent model is applicable also for engineering problems. At the end of the thesis there is evaluation if the setup chosen in the thesis is suitable to apply in any practical aeroacoustics problem modeling.

Page generated in 0.0322 seconds