• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 279
  • 42
  • 23
  • 21
  • 6
  • 5
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 477
  • 477
  • 477
  • 152
  • 85
  • 82
  • 78
  • 75
  • 56
  • 52
  • 49
  • 49
  • 45
  • 44
  • 43
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

New control design and analysis techniques for plants with actuator nonlinearities

Rodríguez Liñán, María Del Carmen January 2013 (has links)
Actuator saturation is ubiquitous in physical plants. In closed-loop systems limits imposed on the actuators may result in degraded performance of the control law and, ultimately, instability of the system. When other non-linearities, such as deadzone, backlash or stiction, are also present in a system’s input, the analysis and design procedures become more involved. The core of this thesis is a new structure based on the right inverse approach for deadzone and backlash, which is extended to linear plants that exhibit a combination of saturation and either deadzone, backlash or stiction, in the actuator. It is shown that, for this type of system, the inclusion of the right inverse nonlinearity results in the linear plant being subject to a new input saturation. Then, one can design standard controllers such as anti-windup or input constrained MPC around this saturation. This simplifies the analysis and design processes, in spite of the presence of complex nonlinearities. The results for deadzone and backlash are extended to stiction by proposing an approximate stiction nonlinearity, and then introducing a right inverse to this approximation. It is demonstrated that the systems studied can be compensated by a standard input constrained MPC which can be solved by a convex quadratic program. Additionally, a simple anti-windup structure is used to demonstrate the applicability of the proposed structure using existing control strategies.
152

Nonlinear Control with State Estimation and Power Optimization for a ROM Ore Milling Circuit

Naidoo, Myrin Anand January 2015 (has links)
A run-of-mine ore milling circuit is primarily used to grind incoming ore containing precious metals to a particle size smaller than a specification size. A traditional run-of-mine (ROM) ore single-stage closed milling circuit comprises of the operational units: mill, sump and cyclone. These circuits are difficult to control because of significant nonlinearities, large time delays, large unmeasured disturbances, process variables that are difficult to measure and modelling uncertainties. A nonlinear model predictive controller with state estimation could yield good control of the ROM ore milling circuit despite these difficulties. Additionally, the ROM ore milling circuit is an energy intensive unit and a controller or power optimizer could bring significant cost savings. A nonlinear model predictive controller requires good state estimates and therefore a neural network for state estimation as an alternative to the particle filter has been addressed. The neural network approach requires fewer process variables that need to be measured compared to the particle filter. A neural network is trained with three disturbance parameters and used to estimate the internal states of the mill, and the results are compared with those of the particle filter implementation. The neural network approach performed better than the particle filter approach when estimating the volume of steel balls and rocks within the mill. A novel combined neural network and particle filter state estimator is presented to improve the estimation of the neural network approach for the estimation of volume of fines, solids and water within the mill. The estimation performance of the combined approach is promising when the disturbance magnitude used is smaller than that used to train the neural network. After state estimation was addressed, this work targets the implementation of a nonlinear controller combined with full state estimation for a grinding mill circuit. The nonlinear controller consists of a suboptimal nonlinear model predictive controller coupled with a dynamic inversion controller. This allows for fast control that is asymptotically stable. The nonlinear controller aims to reconcile the opposing objectives of high throughput and high product quality. The state estimator comprises of a particle filter for five mill states as well as an additional estimator for three sump states. Simulation results show that control objectives can be achieved despite the presence of noise and significant disturbances. The cost of energy has increased significantly in recent years. This increase in price greatly affects the mineral processing industry because of the large energy demands. A run-of-mine ore milling circuit provides a suitable case study where the power consumed by a mill is in the order of 2 MW. An attempt has been made to reduce the energy consumed by the mill in the two ways: firstly, within the nonlinear model predictive control in a single-stage circuit configuration and secondly, running multiple mills in parallel and attempting to save energy while still maintaining an overall high quality and good quantity. A formulation for power optimization of multiple ROM ore milling circuits has been developed. A first base case consisted not taking power into account in a single ROM ore milling circuit and a second base case split the load and throughput equally between two parallel milling circuits. In both cases, energy can be saved using the NMPC compared to the base cases presented without significant sacrifice in product quality or quantity. The work presented covers three topics that has yet to be addressed within the literature: a neural network for mill state estimation, a nonlinear controller with state estimation integrated for a ROM ore milling circuit and power optimization of a single and multiple ROM ore milling circuit configuration. / Dissertation (MEng)--University of Pretoria, 2015. / Electrical, Electronic and Computer Engineering / Unrestricted
153

GPC mediante descomposición en valores singulares (SVD). Análisis de componentes principales (PCA) y criterios de selección

Sanchís Saez, Javier 03 June 2009 (has links)
El control predictivo basado en modelos o Model Predictive Control (MPC), no hace referencia al diseño concreto de un controlador sino más bien a un conjunto de ideas o características para el desarrollo de estrategias de control que, aplicadas en un mayor o menor grado, dan lugar a diferentes tipos de controladores con estructuras similares. El MPC es una de las técnicas de control que más se ha desarrollado en los ámbitos académico e industrial en las últimas décadas debido sobre todo a su simplicidad y eficiencia. Sin embargo, no es fácil relacionar los parámetros de ajuste del controlador y las prestaciones del bucle cerrado. En este sentido, es importante diseñar algoritmos de control predictivo que garanticen la estabilidad nominal del bucle cerrado, con tiempos de cálculo pequeños y con un significado claro de sus parámetros sobre las prestaciones del sistema o sobre el esfuerzo de control. La aportación fundamental de esta tesis está relacionada con la definición de un nuevo tipo de controlador predictivo, el PC-GPC, versión modificada de un GPC estándar. En este controlador se ha sustituido el factor de ponderación de la acción de control por un nuevo parámetro denominado número de componentes principales (NPC). La relación entre el nuevo parámetro (NPC) y algunos indicadores numéricos, como la norma del vector de acciones de control o el número de condición de la matriz dinámica G, hacen que su elección esté basada en criterios menos subjetivos que la ponderación de las acciones de control. Además, se ha analizado este tipo de controlador tanto en el ámbito de procesos SISO como MIMO, así como sus características de robustez y estabilidad. Por otro lado, se ha deducido un método de cálculo de un controlador PC-GPC para garantizar la estabilidad nominal de bucle cerrado, cuando el modelo conocido es exacto. / Sanchís Saez, J. (2002). GPC mediante descomposición en valores singulares (SVD). Análisis de componentes principales (PCA) y criterios de selección [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/4924 / Palancia
154

Hybrid non-linear model predictive control of a run-of-mine ore grinding mill circuit

Botha, Stefan January 2018 (has links)
A run-of-mine (ROM) ore milling circuit is primarily used to grind incoming ore containing precious metals to a powder fine enough to liberate the valuable minerals contained therein. The ground ore has a product particle size specification that is set by the downstream separation unit. A ROM ore milling circuit typically consists of a mill, sump and classifier (most commonly a hydrocyclone). These circuits are difficult to control because of unmeasurable process outputs, non-linearities, time delays, large unmeasured disturbances and complex models with modelling uncertainties. The ROM ore milling circuit should be controlled to meet the final product quality specification, but throughput should also be maximised. This further complicates ROM ore grinding mill circuit control, since an inverse non-linear relationship exists between the quality and throughput. ROM ore grinding mill circuit control is constantly evolving to find the best control method with peripheral tools to control the plant. Although many studies have been conducted, more are continually undertaken, since the controller designs are usually based on various assumptions and the required measurements in the grinding mill circuits are often unavailable. / To improve controller performance, many studies investigated the inclusion of additional manipulated variables (MVs) in the controller formulation to help control process disturbances, or to provide some form of functional control. Model predictive control (MPC) is considered one of the best advanced process control (APC) techniques and linear MPC controllers have been implemented on grinding mill circuits, while various other advanced controllers have been investigated and tested in simulation. Because of the complexity of grinding mill circuits non-linear MPC (NMPC) controllers have achieved better results in simulations where a wider operating region is required. In the search for additional MVs some researchers have considered including the discrete dynamics as part of the controller formulation instead of segregating them from the APC or base-layer controllers. The discrete dynamics are typically controlled using a layered approach. Discrete dynamics are on/off elements and in the case of a closed-loop grinding mill circuit the discrete elements can be on/off activation variables for feed conveyor belts to select which stockpile is used, selecting whether a secondary grinding stage should be active or not, and switching hydrocyclones in a hydrocyclone cluster. Discrete dynamics are added directly to the APC controllers by using hybrid model predictive control (HMPC). HMPC controllers have been designed for grinding mill circuits, but none of them has considered the switching of hydrocyclones as an additional MV and they only include linear dynamics for the continuous elements. This study addresses this gap by implementing a hybrid NMPC (HNMPC) controller that can switch the hydrocyclones in a cluster. / A commonly used continuous-time grinding mill circuit model with one hydrocyclone is adapted to contain a cluster of hydrocyclones, resulting in a hybrid model. The model parameters are refitted to ensure that the initial design steady-state conditions for the model are still valid with the cluster. The novel contribution of this research is the design of a HNMPC controller using a cluster of hydrocyclones as an additional MV. The HNMPC controller is formulated using the complete nonlinear hybrid model and a genetic algorithm (GA) as the solver. An NMPC controller is also designed and implemented as the base case controller in order to evaluate the HNMPC controller’s performance. To further illustrate the functional control benefits of including the hydrocyclone cluster as an MV, a linear optimisation objective was added to the HNMPC to increase the grinding circuit throughput, while maintaining the quality specification. The results show that the HNMPC controller outperforms the NMPC one in terms of setpoint tracking, disturbance rejection, and process optimisation objectives. The GA is shown to be a good solver for HNMPC, resulting in a robust controller that can still control the plant even when state noise is added to the simulation. / Dissertation (MEng)--University of Pretoria, 2018. / National Research Foundation (DAAD-NRF) / Electrical, Electronic and Computer Engineering / MEng / Unrestricted
155

Model Predictive Control and State Estimation for Membrane-based Water Systems

Guo, Xingang 05 1900 (has links)
Lack of clean fresh water is one of the most pervasive problems afflicting people throughout the world. Efficient desalination of sea and brackish water and safe reuse of wastewater become an insistent need. However, such techniques are energy intensive, and thus, a good control design is needed to increase the process efficiency and maintain water production costs at an acceptable level. This thesis proposes solutions to the above challenges and in particular will be focused on two membranebased water systems: Membrane Distillation (MD) and Membrane Bioreactor (MBR) for wastewater treatment plant (WWPT). The first part of this thesis, Direct Contact Membrane Distillation (DCMD) will study as an example an MD process. MD is an emerging sustainable desalination technique which can be powered by renewable energy. Its main drawback is the low water production rate. However, it can be improved by utilizing advanced control strategies. DCMD is modeled by a set of Differential Algebraic Equations (DAEs). In order to improve its water production, an optimization-based control scheme termed Model Predictive Control (MPC) provides a natural framework to optimally operate DCMD processes due to its unique control advantages. Among these advantages are the flexibility provided in formulating the objective function, the capability to directly handle process constraints, and the ability to work with various classes of nonlinear systems. Motivated by the above considerations, two MPC schemes that can maximize the water production rate of DCMD systems have been developed. The first MPC scheme is formulated to track an optimal set-point while taking input and stability constraints into account. The second MPC scheme, Economic MPC (EMPC), is formulated to maximize the distilled water flux while meeting input, stability and other process operational constraints. The total water production under both control designs is compared to illustrate the effectiveness of the two proposed control paradigms. Simulation results show that the DCMD process produces more distilled water when it is operated by EMPC than when it is operated by MPC. The above control techniques assume the full access to the system states. However, this is not the case for the DCMD plant. To effectively control the closed-loop system, an observer design that can estimate the values of the unmeasurable states is required. Motivated by that, a nonlinear observer design for DCMD is proposed. In addition, the effect of the estimation gain matrix on the differentiation index of the DAE system is investigated. Numerical simulations are presented to illustrate the effectiveness of the proposed observer design. The observer-based MPC and EMPC are also studied in this work. Mathematical modeling of a wastewater treatment system is critical because it enhances the process understanding and can be used for process design and process optimization. Motivated by the above considerations, modeling and optimal control strategies have been developed and applied to the MBR-based wastewater treatment process. The model is an extension of the well-known Benchmark simulation models for wastewater treatment. In addition, model predictive control has been applied to maintain the dissolved oxygen concentration level at the desired value. In addition, a conventional PID controller has also been developed. The simulation results show that the both of controllers can be used for dissolved oxygen concentration control. However, MPC has better performance compared to PID scenario.
156

Mathematical Model of Glucose-Insulin Metabolism and Model Predictive Glycemic Control for Critically Ill Patients Considering Time Variability of Insulin Sensitivity / インスリン感度の時変性を考慮に入れた重症患者のグルコース・インスリン代謝の数理モデルおよび血糖値のモデル予測制御

Wu, Sha 23 September 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22779号 / 工博第4778号 / 新制||工||1747(附属図書館) / 京都大学大学院工学研究科電気工学専攻 / (主査)教授 土居 伸二, 教授 萩原 朋道, 教授 小林 哲生, 教授 古谷 栄光 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
157

Fast Optimization Methods for Model Predictive Control via Parallelization and Sparsity Exploitation / 並列化とスパース性の活用によるモデル予測制御の高速最適化手法

DENG, HAOYANG 23 September 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第22808号 / 情博第738号 / 新制||情||126(附属図書館) / 京都大学大学院情報学研究科システム科学専攻 / (主査)教授 大塚 敏之, 教授 加納 学, 教授 太田 快人 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
158

Model-Predictive Control of Gas Exchange in a Gasoline Engine

Jajji, George January 2021 (has links)
The process to induct air into engine cylinders, via the air inlet system and cylin-der port valves, is referred to as the "gas-exchange". Control is achieved by theturbo-charger, the intake throttle plate and the variable valve timing (VVT) sys-tem. These actuation systems traditionally use separate control with indepen-dent SISO feedback. There are however physical couplings that affect the con-trol performance. This thesis work looks at MPC control methods for a robustcontrol strategy. MPC methods are typically used for systems with slow dynam-ics, due to computational limits. But new advances in CPU performance shouldallow for real-time implementations for engine control. / <p>Redan framlagt exjobbet</p>
159

Articulated vehicle stability control using brake-based torque vectoring

Catterick, Jamie January 2021 (has links)
Statistics show that unstable articulated vehicles pose a serious threat to the occupants driving them as well as the occupants of the vehicles around them. An articulated vehicle typically experiences three types of instability: snaking, jack-knifing and rollover. An articulated vehicle subjected to any of these instabilities can result in major accidents. It is also known that many individuals are unaware of how to properly tow or pack a loaded articulated vehicle. These individuals are, therefore, at a high risk of causing the vehicle system to become unstable. It can hence be confidently said that a method in which an articulated vehicle can stabilise itself is a worthy research question. The method that is implemented in this study is to create a control system, using Nonlinear Model Predictive Control (NMPC), that has the capability of stabilising an articulated vehicle by applying torque vectoring to the trailer. In order for this control system to be applied, a nonlinear articulated vehicle MSC ADAMS model was constructed. The NMPC controller works by using a nonlinear explicit model to predict the future states of the vehicle and then finding the optimal left and right braking forces of the trailer by minimising the cost function using least squares minimisation. The cost function includes the towing vehicle yaw rate, trailer yaw rate and hitch angle and is minimised by minimising the error between the desired vehicle states and the actual states. It was found that the NMPC is capable of not only preventing instability but also causes the vehicle system to behave as if the trailer is unloaded. This conclusion means that this type of control system can be used on all types of articulated vehicles and shall ensure the safety of not only the vehicle occupants but other road users as well. Unfortunately, due to the impact of the 2020 COVID-19 pandemic, the experimental validation of the model had to be delayed significantly. It is for this reason that the experimental validation for the controller could not be done. / Dissertation (MEng (Mechanical Engineering))--University of Pretoria, 2021. / SATC VDG UP / Mechanical and Aeronautical Engineering / MEng (Mechanical Engineering) / Unrestricted
160

Aplikace nelineárního prediktivního řízení pro pohon se synchronním motorem / NMPC Application for PMSM Drive Control

Kozubík, Michal January 2019 (has links)
This thesis focuses on the possibilities of application of nonlinear model predictive control for electric drives. Specifically, for drives with a permanent magnet synchronous motor. The thesis briefly describes the properties of this type of drive and presents its mathematical model. After that, a nonlinear model of predictive control and methods of nonlinear optimization, which form the basis for the controller output calculation, are described. As it is used in the proposed algorithm, the Active set method is described in more detail. The thesis also includes simulation experiments focusing on the choice of the objective function on the ability to control the drive. The same effect is examined for the different choices of the length of the prediction horizon. The end of the thesis is dedicated to the comparison between the proposed algorithm and commonly used field oriented control. The computational demands of the proposed algorithm are also measured and compared to the used sampling time.

Page generated in 0.1125 seconds