Spelling suggestions: "subject:"direct contact cembrane distillation"" "subject:"direct contact cembrane istillation""
1 |
Model Predictive Control and State Estimation for Membrane-based Water SystemsGuo, Xingang 05 1900 (has links)
Lack of clean fresh water is one of the most pervasive problems afflicting people throughout the world. Efficient desalination of sea and brackish water and safe reuse of wastewater become an insistent need. However, such techniques are energy intensive, and thus, a good control design is needed to increase the process efficiency and maintain water production costs at an acceptable level. This thesis proposes solutions to the above challenges and in particular will be focused on two membranebased water systems: Membrane Distillation (MD) and Membrane Bioreactor (MBR) for wastewater treatment plant (WWPT).
The first part of this thesis, Direct Contact Membrane Distillation (DCMD) will study as an example an MD process. MD is an emerging sustainable desalination technique which can be powered by renewable energy. Its main drawback is the low water production rate. However, it can be improved by utilizing advanced control strategies. DCMD is modeled by a set of Differential Algebraic Equations (DAEs). In order to improve its water production, an optimization-based control scheme termed Model Predictive Control (MPC) provides a natural framework to optimally operate DCMD processes due to its unique control advantages. Among these advantages are the flexibility provided in formulating the objective function, the capability to directly handle process constraints, and the ability to work with various classes of nonlinear systems. Motivated by the above considerations, two MPC schemes that can maximize the water production rate of DCMD systems have been developed. The first MPC scheme is formulated to track an optimal set-point while taking input and stability constraints into account. The second MPC scheme, Economic MPC (EMPC), is formulated to maximize the distilled water flux while meeting input, stability and other process operational constraints. The total water production under both control designs is compared to illustrate the effectiveness of the two proposed control paradigms. Simulation results show that the DCMD process produces more distilled water when it is operated by EMPC than when it is operated by MPC. The above control techniques assume the full access to the system states. However, this is not the case for the DCMD plant. To effectively control the closed-loop system, an observer design that can estimate the values of the unmeasurable states is required. Motivated by that, a nonlinear observer design for DCMD is proposed. In addition, the effect of the estimation gain matrix on the differentiation index of the DAE system is investigated. Numerical simulations are presented to illustrate the effectiveness of the proposed observer design. The observer-based MPC and EMPC are also studied in this work.
Mathematical modeling of a wastewater treatment system is critical because it enhances the process understanding and can be used for process design and process optimization.
Motivated by the above considerations, modeling and optimal control strategies have been developed and applied to the MBR-based wastewater treatment process. The model is an extension of the well-known Benchmark simulation models for wastewater treatment. In addition, model predictive control has been applied to maintain the dissolved oxygen concentration level at the desired value. In addition, a conventional PID controller has also been developed. The simulation results show that the both of controllers can be used for dissolved oxygen concentration control. However, MPC has better performance compared to PID scenario.
|
2 |
A Framework for Better Understanding and Enhancing Direct Contact Membrane Distillation (DCMD) in Terms of Module Design, Cost Analysis and Energy RequiredAbuHannoud, Ali 07 1900 (has links)
Water is becoming scarcer and several authors have highlighted the upcoming problem of
higher water salinity and the difficulty of treating and discharging water. Moreover,
current discoveries of problems with chemicals that have been used for pretreating or
post-treating water alerted scientists to research better solutions to treat water. Membrane
distillation (MD) is a promising technology that might replace current processes as it has
lower pretreatment requirements combined with a tremendous ability to treat a wide
range of feed sources while producing very high product quality. If it enters the market, it
will have a big influence on all products, from food industry to spaceflight. However,
there are several problems which make MD a hot topic for research. One of them is the
question about the real cost of MD in terms of heating feed and cooling distillate over
time with respect to product quantity and quality. In this work, extensive heating and
cooling analyses are covered to answer this question in order to enhance the MD process.
Results show energy cost to produce water and the main source of energy loss for direct
contact membrane distillation (DCMD), and several suggestions are made in order to
better understand and hence enhance the process.
|
3 |
Effects of Superhydrophobic SiO2 Nano-particles on the Performance of PVDF Flat Sheet Membranes for Membrane DistillationEfome, Johnson Effoe January 2015 (has links)
Poly(vinylidene) fluoride (PVDF) nano-composite membranes were prepared. The dope solution contained varied concentrations of superhydrophobic SiO2 nano-particles. The fabricated flat sheet membranes were characterized extensively by SEM, FTIR, water contact angle, LEPw, surface roughness, pore size diameter and pore size distribution. The effect of the nano-particles on the membrane performance was then analysed. The nano-composite membranes showed increased surface pore diameter, elevated water contact angle measurements with lower LEPw when compared to the neat membrane. The 7 wt. % nano-composite membrane showed the greatest flux in a VMD process with 2.9 kg/m2.h flux achieved accounting to a 4 fold increase when compared to the neat membrane. Desalination test were carried out using a 35 g/L synthetic salt water and rejection >99.98% was obtained. The best performing nano-composite dope solution (7 wt. %) was then further treated for performance enhancement by increasing the water content to increase pore size and pore size distribution followed by coating with nano-fibres. The uncoated and coated flat sheets, were characterized by SEM, surface roughness, LEPw and CAw. Flux analysis showed that the increase in water content had little effects on the VMD flux. It also suggests that; the nano-fibre layer posed very little resistance to mass transfer. A comparison of VMD and DCMD was also done experimentally.
|
4 |
Reduced-Order Dynamic Modeling, Fouling Detection, and Optimal Control of Solar-Powered Direct Contact Membrane DistillationKaram, Ayman M. 12 1900 (has links)
Membrane Distillation (MD) is an emerging sustainable desalination technique.
While MD has many advantages and can be powered by solar thermal energy, its
main drawback is the low water production rate. However, the MD process has
not been fully optimized in terms of its manipulated and controlled variables. This is
largely due to the lack of adequate dynamic models to study and simulate the process.
In addition, MD is prone to membrane fouling, which is a fault that degrades the
performance of the MD process.
This work has three contributions to address these challenges. First, we derive a
mathematical model of Direct Contact Membrane Distillation (DCMD), which is the
building block for the next parts. Then, the proposed model is extended to account
for membrane fouling and an observer-based fouling detection method is developed.
Finally, various control strategies are implemented to optimize the performance of
the DCMD solar-powered process.
In part one, a reduced-order dynamic model of DCMD is developed based on
lumped capacitance method and electrical analogy to thermal systems. The result is
an electrical equivalent thermal network to the DCMD process, which is modeled by
a system of nonlinear differential algebraic equations (DAEs). This model predicts
the water-vapor flux and the temperature distribution along the module length. Experimental data is collected to validate the steady-state and dynamic responses of the proposed model, with great agreement demonstrated in both.
The second part proposes an extension of the model to account for membrane
fouling. An adaptive observer for DAE systems is developed and convergence proof
is presented. A method for membrane fouling detection is then proposed based on
adaptive observers. Simulation results demonstrate the performance of the membrane
fouling detection method.
Finally, an optimization problem is formulated to maximize the process efficiency
of a solar-powered DCMD. The adapted method is known as Extremum Seeking (ES).
A Newton-based ES is designed and the proposed model is used to accurately forecast
the distilled water flux. Although good results are obtained with this method, a
practical modification to the ES scheme is proposed to enhance the practical stability.
|
5 |
Recovery of Cleaning Agents from Food Manufacturing Waste Stream using Novel Filtration TechnologyKim, Woo-Ju January 2021 (has links)
No description available.
|
6 |
Investigations on Solar Powered Direct Contact Membrane DistillationDeshpande, Jaydeep Sanjeev 20 June 2016 (has links)
Desalination is one of the proposed methods to meet the ever increasing water demands. It can be subdivided into two broad categories, thermal based desalination and electricity based desalination. Multi-effect Distillation (MED), Multi-Stage Flashing (MSF), Membrane Distillation (MD) fall under former and Reverse Osmosis (RO), Electro-Dialysis (ED) fall under later. MD offers an attractive solution for seawater as well as brackish water distillation. It shows highly pure yields, theoretically 100% pure. The overall construction of a MD unit is way simpler than any other desalination systems.
MD is a thermally driven diffusion process where desalination takes places in the form of water vapor transport across the membrane. It has low second law efficiency due to parasitic heat losses. The objective of the first part of the investigation is to thoroughly analyze a Direct Contact Membrane Distillation (DCMD) system from the view point of yield and exergy. The insights from exergy analysis are used in a design study, which is used for performance optimization. The first part concludes with a design procedure and design windows for large scale DCMD construction.
In the second part of the investigation, focus is moved to waveguide solar energy collector. The idea behind an ideal waveguide is to reduce the complexity of modeling solar energy collection. The mathematical model provided in this analysis can be extended to a family of non-imaging optics in solar energy and serves as a benchmarking analysis tool. A waveguide is suitable for low temperature operations due to limitations on maximum continuous temperature of operation. Thus, it becomes an ideal solution for DCMD applications. A levelized cost analysis is presented for a waveguide powered DCMD plant of a 30,000 capacity. A combination of waveguide and DCMD shows levelized cost of water at $1.80/m³, which is found to be lower than previously reported solar desalination water costs. / Master of Science
|
7 |
Estudo dos fundamentos de cristalização assistida por destilação com membranas em aplicação de dessalinização de água. / Study of fundamentals in membrane distilation crystallization applied for water desalination.Nariyoshi, Yuri Nascimento 09 August 2016 (has links)
A cristalização assistida por destilação com membranas (membrane distillation crystallization, MDC) se destaca como uma alternativa aos processos convencionais de cristalização evaporativa com múltiplos estágios e/ou recompressão mecânica de vapor para dessalinização de soluções aquosas concentradas com descarga zero de líquido (zero liquid discharge, ZLD) no meio ambiente. Os principais atrativos da MDC são as condições operacionais mais brandas de temperatura e pressão, o que possibilita o emprego de fontes de calor de baixa entalpia e instalações menos requisitadas mecanicamente. Entretanto, por ser um processo de separação que envolve membranas, a formação de incrustação se destaca como inconveniente. Assim sendo, grande parte dos estudos em MDC têm sido voltados para essa questão, com foco na operação de destilação com membranas (membrane distillation, MD), quando o produto de interesse é a água recuperada. Nesse contexto, esta tese amplia o conhecimento na área, sendo estudados os fundamentos de cristalização e a sua relação com parâmetros selecionados do processo. Dessa forma, estudos teórico-experimentais foram conduzidos investigando os mecanismos de cristalização predominantes nesse, de maneira a ampliar a abrangência das teorias clássicas de cristalização. No primeiro capítulo, realizou-se uma revisão bibliográfica a fim de apresentar os fundamentos tecnológicos, bem como as características, limitações e desafios para consolidação em escala industrial da MDC. No segundo capítulo, foi definido o conhecimento científico produzido através da especificação de objetivos. No terceiro capítulo, a operação MD na configuração DCMD (direct contact membrane distillation) foi caracterizada utilizando equações matemáticas para o cálculo do fluxo de vapor. Os valores calculados foram validados com experimentos em escala de bancada. Foi possível identificar que a difusão ordinária molecular é o mecanismo de transporte de massa dominante nos poros da membrana, e quantificar os fenômenos de polarizações de temperatura e de concentração adjacentes à superfície da membrana. No quarto capítulo, a cristalização foi integrada com a DCMD e explorada em uma unidade de bancada. Os processos elementares e acessórios de cristalização predominantes foram esclarecidos como sendo nucleação primária heterogênea (incrustação por cristalização), nucleação secundária (abrasão de cristais) e crescimento cristalino molecular (aumento de tamanho). O quinto capítulo versou sobre uma estratégia proposta para reduzir a nucleação primária heterogênea, força motriz da incrustação por cristalização na membrana. Com base nos processos elementares e acessórios de cristalização identificados, foi avaliada uma modificação na MDC, a submersão de membranas em cristalizador, a qual foi implementada em escala de bancada. Essa modificação se mostrou mais sensível à formação de incrustação, com possibilidade de se encontrar condições favoráveis, uma vez que foi possível operar o processo durante três horas sem desenvolvimento de incrustação na membrana (tempo máximo investigado), mas precisa ser melhor investigada. Por último, no sexto capítulo abordou-se a nucleação primária heterogênea, relacionando esta com a queda de fluxo de vapor e com a distribuição de sólidos formados. O equacionamento do sistema validado no terceiro capítulo foi aplicado para quantificação da supersaturação local na membrana e respectiva associação com os mecanismos de cristalização. Observou-se que o aumento de fluxo aumenta a supersaturação local, que aumenta a nucleação primária heterogênea, sendo essa responsável pela formação de cristais que permaneceram aderidos na membrana (incrustação por cristalização) e que foram soltos em solução (suspensão). Os cristais soltos em solução são predominantes. A fluidodinâmica de escoamento (geometria dos módulos de membranas) associada à supersaturação local (fluxo de vapor) impactam no desprendimento de cristais na membrana originados por nucleação primária heterogênea. Com o aumento de supersaturação local, o desprendimento de cristais em suspensão é favorecido em módulo de membranas do tipo fibras ocas, enquanto não afeta o módulo do tipo tubular. Em seu conjunto, esta tese contribui para a melhoria do entendimento de aspectos fundamentais selecionados do processo MDC e para o emprego deste conhecimento em situações de interesse prático. / Membrane distillation crystallization (MDC) stand as an alternative to conventional evaporative crystallization processes with multiple-stage evaporator and/or mechanical vapor recompression towards concentrated brine desalination aiming at zero liquid discharge (ZLD) in the environment. The major advantages of MDC are the moderate temperature and pressure conditions, which allow the use of low enthalpy heat sources and facilities less mechanically required. However, as in membrane separation processes, membrane fouling plays an important role in MDC. Therefore, most MDC studies have been focused on that, with emphasis on membrane distillation (MD) operation, when the product of interest is the recovered water. In this context, this thesis extends the knowledge in the field, wherein the crystallization fundamentals and its relation with selected process parameters were studied. Thus, theoretical and experimental approaches were carried out in order to investigate the prevailing crystallization mechanisms in the process, so the range of the current crystallization theories could be extended. In the first chapter, a literature review was carried out in order to introduce selected fundamental concepts, as well as the process characteristics, limitations and challenges for industrial consolidation. In the second chapter, the scientific knowledge produced by this work was defined in its objectives. In the third chapter, the MD operation in direct contact configuration (DCMD) was characterized using mathematical equations for the calculation of vapor flux and validated with experimental data in a bench scale unit. The dominant mechanism of mass transport in porous media was found to be the ordinary molecular diffusion and the temperature and concentration polarization effects were quantified in the vicinity of membrane surface. In the fourth chapter, the crystallization operation was integrated with DCMD and investigated in a bench scale unit. The elementary and accessory crystallization mechanisms were highlighted as heterogeneous primary nucleation (crystallization fouling), secondary nucleation (crystal abrasion) and crystalline molecular growth (increase in size). The fifth chapter describes a strategy proposed in order to reduce heterogeneous primary nucleation, the driving force of membrane crystallization fouling. Based on the featured crystallization mechanisms, a modification in the conventional MDC operation was evaluated, the submersion of membranes into the crystallizer vessel, which was implemented in a bench scale unit. The preliminary results showed that this modification is more sensitive to crystallization fouling, with possibility to find promising conditions, once it was possible to operate during three hours without development of crystallization fouling (maximum period of time investigated), but further investigation is needed. Lastly, in the sixth chapter, the primary heterogeneous nucleation mechanism was explored, associating it to flux decay and solid distribution in the unit. The system equations validated in the third chapter were applied in order to quantify the supersaturation ratio generated in the vicinity of membrane surface and respective association with crystallization mechanisms. It was observed that increasing the vapor flux, the local supersaturation ratio also increase and, as consequence, the primary heterogeneous nucleation as well. This mechanism is responsible for the formation of crystals that remained adhered on membrane surface (crystallization fouling) and released in solution (suspension). The portion of crystals loose in solution was predominantly formed. The fluid dynamic of flow (geometry of membrane module) associated with the local supersaturation ratio (vapor flux) impact in the detachment of crystals in the membrane surface, originated by heterogeneous primary nucleation. With an increase in the local supersaturation ratio, the detachment of crystals is increased in the hollow fiber membrane module, while in the tubular module the detachment of crystals does not change. As a whole, this thesis contributes to a better understanding of MDC selected fundamental aspects and to the use of this knowledge in practical situations.
|
8 |
Modèles mathématiques des procédés de séparation membranaire / Mathematical modelling of membrane separation processesPerfilov, Viacheslav 03 December 2018 (has links)
Dans cette thèse ont été développés des modèles mathématiques pour les procédés de distillation membranaire à contact direct (DCMD) et avec balayage gazeux (SGMD) ainsi qu’un modèle sur l’hydrodynamique des bioréacteurs membranaires anaérobiques (AnMBRs) équipés d’un système de vibration membranaire induite (MMV). Les modèles pour la DCMD et la SGMD permettent de simuler le comportement des modules plats ou à fibres creuses sous différentes conditions opératoires, sans avoir recours aux données expérimentales ou à des équations empiriques pour les transferts de masse et de chaleur. Les modèles ont été validés avec des résultats expérimentaux et de la littérature et ont permis de déterminer l'influence de différents paramètres opérationnels et de la géométrie des modules sur les performances des procédés. Le modèle développé pour les AnMBRs équipés du système MMV permet d’étudier l’effet de la vibration membranaire sur l’hydrodynamique du réservoir. L’analyse paramétrique a permis d’étudier l’effet de la fréquence et de l’amplitude des vibrations sur la vitesse du fluide et la fraction volumique des solides dans le réservoir. Dans ce travail il a été démontré que les modèles proposés pourront être potentiellement appliqués à des études expérimentales préliminaires, l’optimisation des conditions opératoires, la conception des modules membranaires ainsi que pour l’estimation des coûts des procédés. / In this work have been developed general predictive models for direct contact membrane distillation (DCMD) and sweeping gas membrane distillation (SGMD) as well as a hydrodynamic model for anaerobic membrane bioreactors (AnMBRs) equipped with the induced membrane vibration (MMV) system. The DCMD and SGMD models allow simulating hollow fibre and flat sheet configurations under wide range of process conditions without empirical mass and heat transfer coefficients or laboratory experiments. The models have been validated with experimental and literature data. Indeed, the influence of operating conditions and membrane geometric characteristics on the process performance has been investigated. The model for AnMBRs with MMV studies the effect of the membrane vibration on the hydrodynamics of the AnMBR tank. The parametric study allows knowing, the effects of the vibration frequency and amplitude on the fluid velocity and volume fraction of solids. The conducted studies prove that all the proposed models would be potentially applied for the pre-experimental study, optimization of process conditions, design of membrane modules as well as for the further cost estimation of the processes.
|
9 |
Estudo dos fundamentos de cristalização assistida por destilação com membranas em aplicação de dessalinização de água. / Study of fundamentals in membrane distilation crystallization applied for water desalination.Yuri Nascimento Nariyoshi 09 August 2016 (has links)
A cristalização assistida por destilação com membranas (membrane distillation crystallization, MDC) se destaca como uma alternativa aos processos convencionais de cristalização evaporativa com múltiplos estágios e/ou recompressão mecânica de vapor para dessalinização de soluções aquosas concentradas com descarga zero de líquido (zero liquid discharge, ZLD) no meio ambiente. Os principais atrativos da MDC são as condições operacionais mais brandas de temperatura e pressão, o que possibilita o emprego de fontes de calor de baixa entalpia e instalações menos requisitadas mecanicamente. Entretanto, por ser um processo de separação que envolve membranas, a formação de incrustação se destaca como inconveniente. Assim sendo, grande parte dos estudos em MDC têm sido voltados para essa questão, com foco na operação de destilação com membranas (membrane distillation, MD), quando o produto de interesse é a água recuperada. Nesse contexto, esta tese amplia o conhecimento na área, sendo estudados os fundamentos de cristalização e a sua relação com parâmetros selecionados do processo. Dessa forma, estudos teórico-experimentais foram conduzidos investigando os mecanismos de cristalização predominantes nesse, de maneira a ampliar a abrangência das teorias clássicas de cristalização. No primeiro capítulo, realizou-se uma revisão bibliográfica a fim de apresentar os fundamentos tecnológicos, bem como as características, limitações e desafios para consolidação em escala industrial da MDC. No segundo capítulo, foi definido o conhecimento científico produzido através da especificação de objetivos. No terceiro capítulo, a operação MD na configuração DCMD (direct contact membrane distillation) foi caracterizada utilizando equações matemáticas para o cálculo do fluxo de vapor. Os valores calculados foram validados com experimentos em escala de bancada. Foi possível identificar que a difusão ordinária molecular é o mecanismo de transporte de massa dominante nos poros da membrana, e quantificar os fenômenos de polarizações de temperatura e de concentração adjacentes à superfície da membrana. No quarto capítulo, a cristalização foi integrada com a DCMD e explorada em uma unidade de bancada. Os processos elementares e acessórios de cristalização predominantes foram esclarecidos como sendo nucleação primária heterogênea (incrustação por cristalização), nucleação secundária (abrasão de cristais) e crescimento cristalino molecular (aumento de tamanho). O quinto capítulo versou sobre uma estratégia proposta para reduzir a nucleação primária heterogênea, força motriz da incrustação por cristalização na membrana. Com base nos processos elementares e acessórios de cristalização identificados, foi avaliada uma modificação na MDC, a submersão de membranas em cristalizador, a qual foi implementada em escala de bancada. Essa modificação se mostrou mais sensível à formação de incrustação, com possibilidade de se encontrar condições favoráveis, uma vez que foi possível operar o processo durante três horas sem desenvolvimento de incrustação na membrana (tempo máximo investigado), mas precisa ser melhor investigada. Por último, no sexto capítulo abordou-se a nucleação primária heterogênea, relacionando esta com a queda de fluxo de vapor e com a distribuição de sólidos formados. O equacionamento do sistema validado no terceiro capítulo foi aplicado para quantificação da supersaturação local na membrana e respectiva associação com os mecanismos de cristalização. Observou-se que o aumento de fluxo aumenta a supersaturação local, que aumenta a nucleação primária heterogênea, sendo essa responsável pela formação de cristais que permaneceram aderidos na membrana (incrustação por cristalização) e que foram soltos em solução (suspensão). Os cristais soltos em solução são predominantes. A fluidodinâmica de escoamento (geometria dos módulos de membranas) associada à supersaturação local (fluxo de vapor) impactam no desprendimento de cristais na membrana originados por nucleação primária heterogênea. Com o aumento de supersaturação local, o desprendimento de cristais em suspensão é favorecido em módulo de membranas do tipo fibras ocas, enquanto não afeta o módulo do tipo tubular. Em seu conjunto, esta tese contribui para a melhoria do entendimento de aspectos fundamentais selecionados do processo MDC e para o emprego deste conhecimento em situações de interesse prático. / Membrane distillation crystallization (MDC) stand as an alternative to conventional evaporative crystallization processes with multiple-stage evaporator and/or mechanical vapor recompression towards concentrated brine desalination aiming at zero liquid discharge (ZLD) in the environment. The major advantages of MDC are the moderate temperature and pressure conditions, which allow the use of low enthalpy heat sources and facilities less mechanically required. However, as in membrane separation processes, membrane fouling plays an important role in MDC. Therefore, most MDC studies have been focused on that, with emphasis on membrane distillation (MD) operation, when the product of interest is the recovered water. In this context, this thesis extends the knowledge in the field, wherein the crystallization fundamentals and its relation with selected process parameters were studied. Thus, theoretical and experimental approaches were carried out in order to investigate the prevailing crystallization mechanisms in the process, so the range of the current crystallization theories could be extended. In the first chapter, a literature review was carried out in order to introduce selected fundamental concepts, as well as the process characteristics, limitations and challenges for industrial consolidation. In the second chapter, the scientific knowledge produced by this work was defined in its objectives. In the third chapter, the MD operation in direct contact configuration (DCMD) was characterized using mathematical equations for the calculation of vapor flux and validated with experimental data in a bench scale unit. The dominant mechanism of mass transport in porous media was found to be the ordinary molecular diffusion and the temperature and concentration polarization effects were quantified in the vicinity of membrane surface. In the fourth chapter, the crystallization operation was integrated with DCMD and investigated in a bench scale unit. The elementary and accessory crystallization mechanisms were highlighted as heterogeneous primary nucleation (crystallization fouling), secondary nucleation (crystal abrasion) and crystalline molecular growth (increase in size). The fifth chapter describes a strategy proposed in order to reduce heterogeneous primary nucleation, the driving force of membrane crystallization fouling. Based on the featured crystallization mechanisms, a modification in the conventional MDC operation was evaluated, the submersion of membranes into the crystallizer vessel, which was implemented in a bench scale unit. The preliminary results showed that this modification is more sensitive to crystallization fouling, with possibility to find promising conditions, once it was possible to operate during three hours without development of crystallization fouling (maximum period of time investigated), but further investigation is needed. Lastly, in the sixth chapter, the primary heterogeneous nucleation mechanism was explored, associating it to flux decay and solid distribution in the unit. The system equations validated in the third chapter were applied in order to quantify the supersaturation ratio generated in the vicinity of membrane surface and respective association with crystallization mechanisms. It was observed that increasing the vapor flux, the local supersaturation ratio also increase and, as consequence, the primary heterogeneous nucleation as well. This mechanism is responsible for the formation of crystals that remained adhered on membrane surface (crystallization fouling) and released in solution (suspension). The portion of crystals loose in solution was predominantly formed. The fluid dynamic of flow (geometry of membrane module) associated with the local supersaturation ratio (vapor flux) impact in the detachment of crystals in the membrane surface, originated by heterogeneous primary nucleation. With an increase in the local supersaturation ratio, the detachment of crystals is increased in the hollow fiber membrane module, while in the tubular module the detachment of crystals does not change. As a whole, this thesis contributes to a better understanding of MDC selected fundamental aspects and to the use of this knowledge in practical situations.
|
Page generated in 0.1503 seconds