• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 294
  • 51
  • 24
  • 23
  • 6
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 520
  • 520
  • 499
  • 166
  • 92
  • 91
  • 87
  • 77
  • 61
  • 54
  • 54
  • 54
  • 52
  • 50
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Modelagem e controle preditivo econômico de um reator de amônia. / Modeling and economic predictive control of an ammonia reactor.

Glauco Gancine Esturilio 25 November 2011 (has links)
Este estudo mostra o desenvolvimento de um controlador da classe MPC Model Predictive Control, ou controle preditivo com modelo, para ser utilizado no reator de amônia da Unidade de Fertilizantes Nitrogenados da Bahia FAFEN-BA, da PETROBRAS, localizada em Camaçari/BA. A estratégia de controle visa manter as temperaturas de saída de cada um dos leitos catalíticos do reator dentro de limites adequados através da manipulação das válvulas de controle instaladas na corrente de alimentação do equipamento. O controlador escolhido foi de horizonte de predição infinito com faixas nas variáveis controladas. Adicionalmente, o controlador contém, em uma única camada, um componente de otimização econômica com o objetivo de maximizar o teor de amônia na saída do reator. A função econômica que dá a direção de otimização consiste em um modelo rigoroso de estado estacionário do reator capaz de calcular a fração molar de amônia na saída do equipamento quando são conhecidas as condições da corrente de alimentação e o valor das variáveis manipuladas do controlador. Os resultados das simulações mostraram que o controlador proposto tem bom desempenho, tanto sob o aspecto de controle, no sentido de controlar o sistema quando este sofre perturbações, quanto sob a ótica de otimização econômica, maximizando a conversão de reagentes em amônia sempre que existem graus de liberdade disponíveis no sistema. Foi verificado que a consideração de um MPC de horizonte de predição infinito elimina a necessidade de considerar o gradiente reduzido da função econômica na função objetivo do controlador. Uma sintonia adequada do controlador permite que se considere o gradiente completo da função econômica sem que haja desvio permanente, ou offset, nas variáveis controladas mesmo quando o ponto ótimo de operação se encontra além da faixa de controle. / This study shows the development of a Model Predictive Control (MPC) to the ammonia reactor of PETROBRAS nitrogen fertilizers unit FAFEN-BA that is located in Camaçari/BA, Brazil. The main goal of the control strategy is to keep the temperature at the outlet of the catalyst beds inside adequate ranges by manipulating the feed flow rates to the reactor beds. It has been chosen an infinite horizon controller with control zones and an economic objective. The control and economic optimization are performed in a single layer structure where the objective is to maximize the ammonia content in the reactor outlet stream. The economic function which provides the optimization direction is based on a steady state rigorous model of the reactor that evaluates the ammonia molar fraction at the outlet stream assuming that the feed stream conditions and the manipulated variables are known. The proposed controller shows satisfactory performance in simulations either controlling the system when it faces external disturbances or optimizing the economic goal by increasing the ammonia conversion when degrees of freedom are available. It is shown that the adoption of the infinite horizon MPC eliminates the need to consider the reduced gradient of the economic function in the cost function of the controller. The proper tuning of the controller allows the consideration of the full gradient of economic function without producing offset in the controlled outputs even when the optimum operating point lays outside the control zones.
162

Modelling, validation, and control of an industrial fuel gas blending system

Muller, C.J. (Cornelius Jacobus) 23 August 2011 (has links)
In industrial fuel gas preparation, there are several compositional properties that must be controlled within specified limits. This allows client plants to use the fuel gas mixture safely without having to adjust and control the composition themselves. The variables to be controlled are the Higher Heating Value (HHV), Wobbe Index (WI), Flame Speed Index (FSI), and Pressure (P). These variables are controlled by adjusting the volumetric flow rates of several inlet gas streams of which some are makeup streams (always available) and some are wild streams that vary in composition and availability (by-products of plants). The inlet streams need to be adjusted in the correct ratios to keep all the controlled variables (CVs) within limits while minimising the cost of the gas blend. Furthermore, the controller needs to compensate for fluctuations in inlet stream compositions and total fuel gas demand (the total discharge from the header). This dissertation describes the modelling and model validation of an industrial fuel gas header as well as a simulation study of three different Model Predictive Control (MPC) strategies for controlling the system while minimising the overall operating cost. / Dissertation (MEng)--University of Pretoria, 2011. / Electrical, Electronic and Computer Engineering / unrestricted
163

Optimal control on rock winder hoist scheduling

Badenhorst, Werner 10 February 2010 (has links)
This dissertation addresses the problem of optimally scheduling the hoists of a twin rock winder system in a demand side management context. The objective is to schedule the hoists at minimum energy cost taking into account various physical and operational constraints and production requirements as well as unplanned system delays. The problem is solved by first developing a static linear programming model of the rock winder system. The model is built on a discrete dynamic winder model and consists of physical and operational winder system constraints and an energy cost based objective function. Secondly a model predictive control based scheduling algorithm is applied to the model to provide closed-loop feedback control. The scheduling algorithm first solves the linear programming problem before applying an adapted branch and bound integer solution methodology to obtain a near optimal integer schedule solution. The scheduling algorithm also compensates for situations resulting in infeasible linear programming solutions. The simulation results show the model predictive control based scheduling algorithm to be able to successfully generate hoist schedules that result in steady state solutions in all scenarios studied, including where delays are enforced. The energy cost objective function is proven to be very effective in ensuring minimal hoisting during expensive peak periods and maximum hoisting during low energy cost off-peak periods. The algorithm also ensures that the hoist target is achieved while controlling all system states within or around their boundaries for a sustainable and continuous hoist schedule. Copyright / Dissertation (MEng)--University of Pretoria, 2010. / Electrical, Electronic and Computer Engineering / Unrestricted
164

Robust nonlinear model predictive control of a closed run-of-mine ore milling circuit

Coetzee, Lodewicus Charl 27 September 2009 (has links)
This thesis presents a robust nonlinear model predictive controller (RNMPC), nominal nonlinear model predictive controller (NMPC) and single-loop proportional-integral-derivative (PID) controllers that are applied to a nonlinear model of a run-of-mine (ROM) ore milling circuit. The model consists of nonlinear modules for the individual process units of the milling circuit (such as the mill, sump and cyclone), which allow arbitrary milling circuit configurations to be modelled easily. This study aims to cast a complex problem of a ROM ore milling circuit into an RNMPC framework without losing the flexibility of the modularised nonlinear model and implement the RNMPC using open-source software modules. The three controllers are compared in a simulations study to determine the performance of the controllers subject to severe disturbances and model parameter variations. The disturbances include changes to the feed ore hardness, changes in the feed ore size distributions and spillage water being added to the sump. The simulations show that the RNMPC and NMPC perform better than the PID controllers with regard to the economic objectives, assuming full-state feedback is available, especially when actuator constraints become active. The execution time of the RNMPC, however, is much too long for real-time implementation and would require further research to improve the efficiency of the implementation. / Thesis (PhD)--University of Pretoria, 2009. / Electrical, Electronic and Computer Engineering / unrestricted
165

New control design and analysis techniques for plants with actuator nonlinearities

Rodríguez Liñán, María Del Carmen January 2013 (has links)
Actuator saturation is ubiquitous in physical plants. In closed-loop systems limits imposed on the actuators may result in degraded performance of the control law and, ultimately, instability of the system. When other non-linearities, such as deadzone, backlash or stiction, are also present in a system’s input, the analysis and design procedures become more involved. The core of this thesis is a new structure based on the right inverse approach for deadzone and backlash, which is extended to linear plants that exhibit a combination of saturation and either deadzone, backlash or stiction, in the actuator. It is shown that, for this type of system, the inclusion of the right inverse nonlinearity results in the linear plant being subject to a new input saturation. Then, one can design standard controllers such as anti-windup or input constrained MPC around this saturation. This simplifies the analysis and design processes, in spite of the presence of complex nonlinearities. The results for deadzone and backlash are extended to stiction by proposing an approximate stiction nonlinearity, and then introducing a right inverse to this approximation. It is demonstrated that the systems studied can be compensated by a standard input constrained MPC which can be solved by a convex quadratic program. Additionally, a simple anti-windup structure is used to demonstrate the applicability of the proposed structure using existing control strategies.
166

Nonlinear Control with State Estimation and Power Optimization for a ROM Ore Milling Circuit

Naidoo, Myrin Anand January 2015 (has links)
A run-of-mine ore milling circuit is primarily used to grind incoming ore containing precious metals to a particle size smaller than a specification size. A traditional run-of-mine (ROM) ore single-stage closed milling circuit comprises of the operational units: mill, sump and cyclone. These circuits are difficult to control because of significant nonlinearities, large time delays, large unmeasured disturbances, process variables that are difficult to measure and modelling uncertainties. A nonlinear model predictive controller with state estimation could yield good control of the ROM ore milling circuit despite these difficulties. Additionally, the ROM ore milling circuit is an energy intensive unit and a controller or power optimizer could bring significant cost savings. A nonlinear model predictive controller requires good state estimates and therefore a neural network for state estimation as an alternative to the particle filter has been addressed. The neural network approach requires fewer process variables that need to be measured compared to the particle filter. A neural network is trained with three disturbance parameters and used to estimate the internal states of the mill, and the results are compared with those of the particle filter implementation. The neural network approach performed better than the particle filter approach when estimating the volume of steel balls and rocks within the mill. A novel combined neural network and particle filter state estimator is presented to improve the estimation of the neural network approach for the estimation of volume of fines, solids and water within the mill. The estimation performance of the combined approach is promising when the disturbance magnitude used is smaller than that used to train the neural network. After state estimation was addressed, this work targets the implementation of a nonlinear controller combined with full state estimation for a grinding mill circuit. The nonlinear controller consists of a suboptimal nonlinear model predictive controller coupled with a dynamic inversion controller. This allows for fast control that is asymptotically stable. The nonlinear controller aims to reconcile the opposing objectives of high throughput and high product quality. The state estimator comprises of a particle filter for five mill states as well as an additional estimator for three sump states. Simulation results show that control objectives can be achieved despite the presence of noise and significant disturbances. The cost of energy has increased significantly in recent years. This increase in price greatly affects the mineral processing industry because of the large energy demands. A run-of-mine ore milling circuit provides a suitable case study where the power consumed by a mill is in the order of 2 MW. An attempt has been made to reduce the energy consumed by the mill in the two ways: firstly, within the nonlinear model predictive control in a single-stage circuit configuration and secondly, running multiple mills in parallel and attempting to save energy while still maintaining an overall high quality and good quantity. A formulation for power optimization of multiple ROM ore milling circuits has been developed. A first base case consisted not taking power into account in a single ROM ore milling circuit and a second base case split the load and throughput equally between two parallel milling circuits. In both cases, energy can be saved using the NMPC compared to the base cases presented without significant sacrifice in product quality or quantity. The work presented covers three topics that has yet to be addressed within the literature: a neural network for mill state estimation, a nonlinear controller with state estimation integrated for a ROM ore milling circuit and power optimization of a single and multiple ROM ore milling circuit configuration. / Dissertation (MEng)--University of Pretoria, 2015. / Electrical, Electronic and Computer Engineering / Unrestricted
167

Hybrid non-linear model predictive control of a run-of-mine ore grinding mill circuit

Botha, Stefan January 2018 (has links)
A run-of-mine (ROM) ore milling circuit is primarily used to grind incoming ore containing precious metals to a powder fine enough to liberate the valuable minerals contained therein. The ground ore has a product particle size specification that is set by the downstream separation unit. A ROM ore milling circuit typically consists of a mill, sump and classifier (most commonly a hydrocyclone). These circuits are difficult to control because of unmeasurable process outputs, non-linearities, time delays, large unmeasured disturbances and complex models with modelling uncertainties. The ROM ore milling circuit should be controlled to meet the final product quality specification, but throughput should also be maximised. This further complicates ROM ore grinding mill circuit control, since an inverse non-linear relationship exists between the quality and throughput. ROM ore grinding mill circuit control is constantly evolving to find the best control method with peripheral tools to control the plant. Although many studies have been conducted, more are continually undertaken, since the controller designs are usually based on various assumptions and the required measurements in the grinding mill circuits are often unavailable. / To improve controller performance, many studies investigated the inclusion of additional manipulated variables (MVs) in the controller formulation to help control process disturbances, or to provide some form of functional control. Model predictive control (MPC) is considered one of the best advanced process control (APC) techniques and linear MPC controllers have been implemented on grinding mill circuits, while various other advanced controllers have been investigated and tested in simulation. Because of the complexity of grinding mill circuits non-linear MPC (NMPC) controllers have achieved better results in simulations where a wider operating region is required. In the search for additional MVs some researchers have considered including the discrete dynamics as part of the controller formulation instead of segregating them from the APC or base-layer controllers. The discrete dynamics are typically controlled using a layered approach. Discrete dynamics are on/off elements and in the case of a closed-loop grinding mill circuit the discrete elements can be on/off activation variables for feed conveyor belts to select which stockpile is used, selecting whether a secondary grinding stage should be active or not, and switching hydrocyclones in a hydrocyclone cluster. Discrete dynamics are added directly to the APC controllers by using hybrid model predictive control (HMPC). HMPC controllers have been designed for grinding mill circuits, but none of them has considered the switching of hydrocyclones as an additional MV and they only include linear dynamics for the continuous elements. This study addresses this gap by implementing a hybrid NMPC (HNMPC) controller that can switch the hydrocyclones in a cluster. / A commonly used continuous-time grinding mill circuit model with one hydrocyclone is adapted to contain a cluster of hydrocyclones, resulting in a hybrid model. The model parameters are refitted to ensure that the initial design steady-state conditions for the model are still valid with the cluster. The novel contribution of this research is the design of a HNMPC controller using a cluster of hydrocyclones as an additional MV. The HNMPC controller is formulated using the complete nonlinear hybrid model and a genetic algorithm (GA) as the solver. An NMPC controller is also designed and implemented as the base case controller in order to evaluate the HNMPC controller’s performance. To further illustrate the functional control benefits of including the hydrocyclone cluster as an MV, a linear optimisation objective was added to the HNMPC to increase the grinding circuit throughput, while maintaining the quality specification. The results show that the HNMPC controller outperforms the NMPC one in terms of setpoint tracking, disturbance rejection, and process optimisation objectives. The GA is shown to be a good solver for HNMPC, resulting in a robust controller that can still control the plant even when state noise is added to the simulation. / Dissertation (MEng)--University of Pretoria, 2018. / National Research Foundation (DAAD-NRF) / Electrical, Electronic and Computer Engineering / MEng / Unrestricted
168

Model Predictive Control and State Estimation for Membrane-based Water Systems

Guo, Xingang 05 1900 (has links)
Lack of clean fresh water is one of the most pervasive problems afflicting people throughout the world. Efficient desalination of sea and brackish water and safe reuse of wastewater become an insistent need. However, such techniques are energy intensive, and thus, a good control design is needed to increase the process efficiency and maintain water production costs at an acceptable level. This thesis proposes solutions to the above challenges and in particular will be focused on two membranebased water systems: Membrane Distillation (MD) and Membrane Bioreactor (MBR) for wastewater treatment plant (WWPT). The first part of this thesis, Direct Contact Membrane Distillation (DCMD) will study as an example an MD process. MD is an emerging sustainable desalination technique which can be powered by renewable energy. Its main drawback is the low water production rate. However, it can be improved by utilizing advanced control strategies. DCMD is modeled by a set of Differential Algebraic Equations (DAEs). In order to improve its water production, an optimization-based control scheme termed Model Predictive Control (MPC) provides a natural framework to optimally operate DCMD processes due to its unique control advantages. Among these advantages are the flexibility provided in formulating the objective function, the capability to directly handle process constraints, and the ability to work with various classes of nonlinear systems. Motivated by the above considerations, two MPC schemes that can maximize the water production rate of DCMD systems have been developed. The first MPC scheme is formulated to track an optimal set-point while taking input and stability constraints into account. The second MPC scheme, Economic MPC (EMPC), is formulated to maximize the distilled water flux while meeting input, stability and other process operational constraints. The total water production under both control designs is compared to illustrate the effectiveness of the two proposed control paradigms. Simulation results show that the DCMD process produces more distilled water when it is operated by EMPC than when it is operated by MPC. The above control techniques assume the full access to the system states. However, this is not the case for the DCMD plant. To effectively control the closed-loop system, an observer design that can estimate the values of the unmeasurable states is required. Motivated by that, a nonlinear observer design for DCMD is proposed. In addition, the effect of the estimation gain matrix on the differentiation index of the DAE system is investigated. Numerical simulations are presented to illustrate the effectiveness of the proposed observer design. The observer-based MPC and EMPC are also studied in this work. Mathematical modeling of a wastewater treatment system is critical because it enhances the process understanding and can be used for process design and process optimization. Motivated by the above considerations, modeling and optimal control strategies have been developed and applied to the MBR-based wastewater treatment process. The model is an extension of the well-known Benchmark simulation models for wastewater treatment. In addition, model predictive control has been applied to maintain the dissolved oxygen concentration level at the desired value. In addition, a conventional PID controller has also been developed. The simulation results show that the both of controllers can be used for dissolved oxygen concentration control. However, MPC has better performance compared to PID scenario.
169

Mathematical Model of Glucose-Insulin Metabolism and Model Predictive Glycemic Control for Critically Ill Patients Considering Time Variability of Insulin Sensitivity / インスリン感度の時変性を考慮に入れた重症患者のグルコース・インスリン代謝の数理モデルおよび血糖値のモデル予測制御

Wu, Sha 23 September 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22779号 / 工博第4778号 / 新制||工||1747(附属図書館) / 京都大学大学院工学研究科電気工学専攻 / (主査)教授 土居 伸二, 教授 萩原 朋道, 教授 小林 哲生, 教授 古谷 栄光 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
170

Fast Optimization Methods for Model Predictive Control via Parallelization and Sparsity Exploitation / 並列化とスパース性の活用によるモデル予測制御の高速最適化手法

DENG, HAOYANG 23 September 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第22808号 / 情博第738号 / 新制||情||126(附属図書館) / 京都大学大学院情報学研究科システム科学専攻 / (主査)教授 大塚 敏之, 教授 加納 学, 教授 太田 快人 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM

Page generated in 0.0822 seconds