• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hacking a Commercial Drone

Höglund Gran, Tommie, Mickols, Erik January 2020 (has links)
Obemannade luftfarkoster, även kallade drönare, är del av IoT-revolutionen och har uppmärksammats de senaste åren på grund av integritetsfrågor såväl som flygplats- och militär säkerhet. Då de kan flyga samt har implementerat en ökande mängd teknologi, särskilt kamera och annan övervakning, är de attraktiva måltavlor för hackers och penetrationstestare. Ett antal attacker har genomförts i närtid. I detta examensarbete utforskas och attackeras drönaren Parrot ANAFI genom att använda hotmodellering ur ett black box-perspektiv. Hotmodelleringen inkluderar hotidentifiering med STRIDE samt riskvärdering med DREAD. Inga stora svagheter i systemet hittades. Rapporten visar att tillverkaren har en stor säkerhetsmedvetenhet. Exempel på denna medvetenhet är att tidigare rapporterade svagheter har åtgärdats och programkoden har förvrängts. Metoderna och de funna resultaten kan användas för att vidare utforska svagheter i drönare och liknande IoT-enheter. / Unmanned aerial vehicles, commonly known as drones, are part of the IoT revolution and have gotten some attention in recent years due to privacy violation issues as well as airport and military security. Since they can fly and have an increasing amount of technology implemented, especially camera and other surveillance, they are attractive targets for hackers and penetration testers. A number of attacks have been carried out over the years. In this thesis the Parrot ANAFI drone is explored and attacked using threat modeling from a black box perspective. The threat modeling includes identifying threats with STRIDE and assessing risks with DREAD. Major vulnerabilities in the system were not found. This report shows that the manufacturer has a high security awareness. Examples of this awareness are that previously reported vulnerabilities have been mitigated and firmware code has been obfuscated. The methods used and results found could be used to further explore vulnerabilities in drones and similar IoT devices.
2

Identificação dinamica longitudinal de um dirigivel robotico autonomo / Methodologies definition and validation for the longitudinal dynamic identification of an unmanned robotic airshi

Faria, Bruno Guedes 28 February 2005 (has links)
Orientadores: Paulo Augusto Valente Ferreira, Ely Carneiro de Paiva / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-04T03:59:44Z (GMT). No. of bitstreams: 1 Faria_BrunoGuedes_M.pdf: 2340545 bytes, checksum: 440ff7a9aa46f5a39514e81423363750 (MD5) Previous issue date: 2005 / Resumo: Nos últimos anos tem-se observado um crescente interesse de empresas e instituições de pesquisa pelo desenvolvimento de veículos robóticos, dotados de diferentes níveis de capacidade de operação autônoma, objetivando a execução de diversas tarefas. Dentro deste contexto o CenPRA, Centro de Pesquisas Renato Archer, propôs o Projeto AURORA. O Projeto AURORA (Autonomous Unmanned Remote mOnitoring Robotic Airship) tem como seu principal objetivo o desenvolvimento de protótipos de veículos aéreos tele-operados, e a obtenção de veículos telemonitorados, através do desenvolvimento de sistemas com graus de autonomia crescentes. Para que se possam agregar níveis crescentes de autonomia ao veículo, é essencial incrementar seu sistema de controle e navegação de maneira gradativa. Por esse motivo o aprimoramento das estratégias de controle do sistema é essencial. Assim, é primordial possuir um modelo fidedigno do sistema físico em questão, pois somente dessa forma é possível elaborar leis de controle e testá-las imediatamente em simulação antes de partir para os ensaios práticos no veículo real. Além disso, um modelo adequado é essencial para a simulação do vôo do dirigível de forma a permitir a análise preliminar de seu comportamento diante de uma nova missão. O principal objetivo deste trabalho é a implementação e validação de metodologias para a identificação do modelo dinâmico longitudinal do dirigível. Foram abordadas três metodologias para a identificação do modelo dinâmico do dirigível: a identificação estacionária, que identifica os coeficientes aerodinâmicos do dirigível a partir de um vôo estacionário, a identificação dinâmica, que identifica esses coeficientes e a dinâmica linearizada do veículo a partir de um vôo com entradas de perturbação conhecidas e, finalmente, a identificação por meio de estratégias evolutivas, que procura otimizar alguns parâmetros do modelo dinâmico. As três metodologias foram testadas, validadas e comparadas através de ensaios de simulação, utilizando-se o simulador do dirigível AS800 do Projeto AURORA / Abstract: In recent years many research institutions and companies have been demonstrating a growing interest in the development of unmanned aerial vehicles with different autonomous operation levels in order to allow for the performance of many types of tasks. Within this context, CenPRA (Renato Archer Research Center) proposed the Project AURORA. Project AURORA (Autonomous Unmanned Remote Monitoring Robotic Airship) aims at the development of unmanned airships remotely operated with a view to the creation of an autonomous flight airship by the incorporation of increasing levels of autonomy. In order to increase the vehicle autonomy level, the development of a proportionally enhanced control and navigation systems is essential. It is extremely important to have a very accurate model of the physical airship system, given that this is the only way to design control laws for the vehicle and test them in simulation before performing actual flight tests. Moreover, an accurate model is essential to predict the vehicle behavior in simulation before any real flight demanding a new type of mission. The definition of identification methodologies for the AS800 airship system identification is the main scope of this work. Three methodologies were considered to allow the airship dynamic model identification: stationary identification, which identifies aerodynamic coefficients from stationary stabilized flight conditions; dynamic identification, which identifies these coefficients and the vehicle linear dynamics from the application of known inputs into the system; and, finally, through evolution strategies, which uses an evolutionary approach for the optimization of the aerodynamic coefficients of the dynamic model. All the methodologies were tested, validated and compared through simulation experiments by using the AS800 airship simulator of the Project AURORA / Mestrado / Automação / Mestre em Engenharia Elétrica

Page generated in 0.1312 seconds