• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • Tagged with
  • 12
  • 12
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Three Essays in Economics of Prey-Predator Relation

Go, Dong-Hun 01 May 2018 (has links)
This dissertation explores how natural ecosystem can be integrated with economic system through two case studies of multiple species interactions, or predator-prey relations. By the inclusion of biological, ecological and economic aspects, the integrated approaches aim at more clearly understanding of how regional ecosystem and economy interact with each other, given threats of resource extinction and environmental shock. I also explain strategies and policy regimes that can be considered to achieve efficient and sustainable ecosystem management in those circumstances. The first case study focuses on a predator-prey relation in the Pacific Ocean between the United States and Canada, where endangered/threatened predators feed primarily on commercially valuable species as prey. Accounting for the importance of those predators as critical natural resources for whale watching industry, this case study synthesizes the species biological and the regional economic systems, and analyzes possible management strategies for both ecosystem conservation and sustainable economic growth. A long-term drought and fragmented management has been one of the critical issues in the Great Salt Lake (GSL) ecosystem that is linked with its regional economy in Utah. For this issue, the second case study builds an integrated model for describing how the lakes main natural resources, such as water, brine shrimp, and migratory birds, are related to primary industries in the region including agriculture, mining, fishery, and recreation. With the model framework, the study presents how the prolonged drought affects both the GSL ecosystem and its rigional economy, and suggests economic management strategies for the lakes ecosystem recovery in the presence of drought.
2

A Structural Equation Modeling Approach to the Impact of Re-Engineering on the Staff of a Large Teaching Hospital

Zhu, Bin 01 1900 (has links)
In this project we used structural equation method to analyze the data collected during the period of re-engineering in hospitals in Ontario 1995 to 1997. We want to understand how organizational change affect the well being of the staff of large teaching hospital. Two main models were considered in this project: cross-sectional models and longitudinal models for the data collected in 1995 and 1997. We tested six models for each year's data in cross-sectional model, effect-indicator, cause-indicator and mixed-indicator were used in both standard and non-standard models. We explored standard model with effect-indicators in our longitudinal case. The study was carried by SAS software program. We demonstrated an important association of job stressors with psychological outcomes of hospital staff directly and indirectly via interference. Decision-making capacity was associated with psychological outcomes in the opposite direction. Similar results were concluded from longitudinal model. The limitation was discussed. / Thesis / Master of Science (MS)
3

Study on Architecture Electronic Medical Record Admission System

Shieh, Yu-Ling 21 June 2008 (has links)
Electronic medical records, in addition contributing to a hospital¡¦s overall electronic development and moving towards a paperless environment, also allow hospitals to share electronic medical information. To solve the problem of different medical information systems that hamper information sharing, the Executive Yuan Heath Department Commission has requested the assistance of the Taiwan Association for Medical Information to establish a standard Electronic Medical Record Template, in hopes that there is a national unified Electronic Medical Record Template that also uses the international medical information standard, so that all hospital¡¦s information is accessible, allowing for easy sharing of electronic medical records. The administration department also supports in recommending and creating related steps of incentive, to encourage professional electronic medical record researchers making up a standard internet medical information exchange mechanism, with a goal of achieving national medical information exchange. Though the Executive Yuan Heath Department Commission had a nice scheme, but the standard Electronic Medical Record Template established by Taiwan Association for Medical Information is nothing more than a Form Structure Diagram what is far from the software architecture discipline. This research aims to re-define the electronic medical record system, adopting a software architecture modeling approach. Through Structure Element Diagram, Structure Element Service Diagram, Structure Behavior Coalescence Diagram, and Sequence Diagram as four gold rules, we are able to build up any electronic medical record system architecture. Besides providing medical information personnel a more definite electronic medical record system, this research aids hospitals quickly attain an effective electronic medical record system.
4

Intéractions aérosols-rayonnement-nuages et variabilité climatique en méditerranée - Approche par la modelisation régionale couplée / Aerosols-radiation-clouds interactions and climatic variability over the Mediterranean - Coupled regional modeling approach

Nabat, Pierre 09 October 2014 (has links)
Le bassin méditerranéen est sujet à de nombreuses sources d'aérosols présentant une variabilité spatio-temporelle élevée. Ces aérosols interagissent de manière directe avec les rayonnements solaire et thermique, et de manière indirecte avec les nuages et la dynamique atmosphérique. Ils peuvent donc avoir un impact important sur le climat de cette région. Ce travail de thèse, à la frontière entre les projets HyMeX et ChArMEx, considère une approche par la modélisation régionale couplée pour répondre aux questions des interactions aérosols-rayonnement-nuages par rapport à la variabilité climatique de la région méditerranéenne. Afin de mieux caractériser les aérosols méditerranéens, une nouvelle climatologie mensuelle et interannuelle d'épaisseur optique a été développée à partir d'une combinaison de produits satellites et de modèles. Ce jeu de données, disponible pour tous les modèles régionaux de climat en Méditerranée sur la période 1979-2012, a été mis au point dans le but d'obtenir la meilleure estimation possible du contenu atmosphérique en aérosols pour les cinq types considérés (sulfates, carbone suie et organique, poussières désertiques et sels marins). Des ensembles de simulations réalisées sur la période 2003-2009 avec et sans aérosols montrent un impact majeur sur le climat régional. Cet impact se caractérise par un forçage radiatif négatif en surface (dû à la diffusion et l'absorption du rayonnement solaire incident) de -15 W.m−2 en moyenne annuelle sur la mer Méditerranée, par un refroidissement induit en surface à la fois sur mer et sur terre de l'ordre de 0.5◦C en moyenne annuelle, par une diminution moyenne des précipitations ainsi que par des changements de nébulosité. Le cycle saisonnier et les structures spatiales du climat méditerranéen sont ainsi significativement modifiés, ainsi que certaines situations spécifiques comme la canicule de juillet 2006 qui a été renforcée par la présence d'aérosols désertiques. Le rôle essentiel de la température de surface de la mer Méditerranée dans la réponse du climat aux aérosols est mis en évidence, et permet de comprendre les modifications induites des flux air-mer (notamment la diminution de la perte en chaleur latente) et ses conséquences sur le climat régional. La convection océanique en mer Méditerranée est également renforcée par la présence d'aérosols. En outre, on démontre que la diminution des aérosols anthropiques observée depuis plus de trente ans a contribué significativement aux tendances climatiques de rayonnement (représentant 81 ± 15 % de l'éclaircissement) et de température (représentant 23 ± 5 % du réchauffement) observées en Europe et en Méditerranée. D'autre part, un schéma interactif d'aérosols a été mis en place dans le modèle atmosphérique ALADIN-Climat afin de pouvoir comprendre les processus liés aux aérosols à l'échelle quotidienne. On montre ici la capacité de ce schéma de simuler de manière réaliste les aérosols présents en Méditerranée, notamment dans le cas des intrusions de poussières désertiques observées pendant la campagne de mesures ChArMEx/TRAQA. Un exercice d'intercomparaison avec d'autres modèles intégrant les aérosols désertiques confirme la performance du nouveau schéma. De plus, utiliser un schéma prognostique d'aérosols au lieu d'une climatologie mensuelle permet de mieux reproduire les variations quotidiennes et en particulier les extrêmes de rayonnement et de température en surface. Cela induit aussi une modification du climat moyen, dans la mesure où les variations des aérosols et de leurs effets dépendent des régimes de temps et de la nébulosité. Cette thèse conclut ainsi à la nécessité pour les systèmes climatiques de modélisation régionale en Méditerranée de bien prendre en compte les effets radiatifs des aérosols et leur variabilité spatiotemporelle, y compris à haute fréquence. / The Mediterranean basin is affected by numerous and various aerosols which have a high spatiotemporal variability. These aerosols directly interact with solar and thermal radiation, and indirectly with clouds and atmospheric dynamics. Therefore they can have an important impact on the regional climate. This work, located at the boundary between the ChArMEx and HyMeX programs, considers a coupled regional modeling approach in order to address the questions of the aerosol-radiation-cloud interactions with regards to the climate variability over the Mediterranean. In order to improve the characterization of Mediterranean aerosols, a new interannual monthly climatology of aerosol optical depth has been developed from a blended product based on both satellitederived and model-simulated datasets. This dataset, available for every regional climate model over the Mediterranean for the 1979-2012 period, has been built to obtain the best possible estimate of the atmospheric aerosol content for the five species at stake (sulfate, black carbon, organic matter, desert dust and sea salt particles). Simulation ensembles, which have been carried out over the 2003-2009 period with and without aerosols, show a major impact on the regional climate. This impact is characterized by a negative surface radiative forcing (due to the absorption and the scattering of the solar incident radiation) of -15 W.m−2 on annual average over the Mediterranean Sea, an induced surface cooling both over land and sea of about -0.5◦C on annual average, a decrease in precipitation as well as cloud cover changes. The seasonal cycle and the spatial patterns of the Mediterranean climate are significantly modified, as well as some specific situations such as the heat wave in July 2006 strengthened by the presence of desert dust particles. The essential role of the Mediterranean sea surface temperature is highlighted, and enables to understand the induced changes on air-sea fluxes (notably the decrease in the latent heat loss) and the consequences on regional climate. Oceanic convection is also strengthened by aerosols. In addition, the decrease in anthropogenic aerosols observed for more than thirty years is shown to significantly contribute to the observed Euro-Mediterranean climatic trends in terms of surface radiation (representing 81 ± 15 % of the brightening) and temperature (representing 23 ± 5 % of the warming). Besides, an interactive aerosol scheme has been developed in the atmospheric model ALADINClimate in order to better understand aerosol processes at the daily scale. This scheme shows its ability to represent correctly the aerosol patterns over the Mediterranean, especially with regards to dust outbreaks that were measured during the ChArMEx/TRAQA field campaign. An intercomparison exercise with several dust models confirms the performance of the new scheme. Moreover, the use of a prognostic aerosol scheme instead of a monthly climatology enables to better reproduce the daily variations of surface radiation and temperature and related extremes. This also leads to changes in the mean climate, insofar as aerosol variations and their effects depend on weather regimes and cloud cover. Finally this study concludes with the need for regional climate system models over the Mediterranean to take into account the radiative aerosol effects and their spatio-temporal variability, including at high frequency. The impacts of these radiative effects on numerous parameters (radiation, temperature, humidity, ocean-atmosphere fluxes, oceanic circulation, etc.) are indeed shown and understood at different space and time scales (daily variability, seasonal cycle, climate trends, spatial structures). This work has also shown the importance of the coupling between the atmosphere and the Mediterranean Sea for aerosol-climate studies in this region.
5

Measuring and Modeling of Phenylpropanoid Metabolic Flux in Arabidopsis

Peng Wang (5930384) 12 October 2021 (has links)
<p>Plants naturally deposit a significant amount of carbon towards lignin, a polymer that imparts mechanical strength to cell walls but impedes our utilization of the polysaccharides in lignocellulosic biomass. Genetic engineering of lignin has demonstrated profound success in improving the processing of the biomass. Lignin is derived from the phenylpropanoid pathway, the architecture of which is well understood based upon the biochemical and genetic studies conducted to date. In contrast, we lack a systematic and quantitative view of the factors that determine carbon flux into and within this branched metabolic pathway in plants. To explore the control of carbon allocation for phenylalanine and lignin biosynthesis, we have developed a kinetic model of the pathway in Arabidopsis to test the regulatory role of several key enzymatic steps. We first established a <sup>13</sup>C isotope feeding system for the measurement of flux using excised wild-type Arabidopsis stems. The excised stems continued to grow and lignify in our feeding system. When ring <sup>13</sup>C<sub>6</sub>-labeled phenylalanine ([<sup>13</sup>C<sub>6</sub>]-Phe) was supplied to excised stems, isotope label was rapidly incorporated into soluble intermediates and lignin. Using this approach, we then analyzed metabolite pool sizes and isotope abundances of the pathway intermediates in a time course from stems fed with [<sup>13</sup>C<sub>6</sub>]-Phe of different concentrations, and used these data to parameterize a kinetic model constructed with Michaelis-Menten kinetics. Our model of the general phenylpropanoid pathway captured the dynamic trends of metabolite pools <i>in vivo</i>and predicted the metabolic profiles of an independent feeding experiment. Based on the model simulation, we found that subcellular sequestration of pathway intermediates is necessary to maintain lignification homeostasis when metabolites are over-accumulated. Both the measurements and simulation suggested that theavailability of substrate Phe is one limiting factor for lignin flux in developing stems. This finding indicates new gene targets for lignin manipulation in plants. To extend our kinetic model to simulate flux distribution in response to genetic perturbations, we conducted an RNA-sequencing experiment in wild type and 13 plants with modified lignification, and integrated the transcriptional data with the metabolic profiles. We found that the biosynthesis of Phe and lignification are tightly coordinated at transcriptional level. The coregulation of the shikimate and phenylpropanoid pathways involves transcriptional and post-translational regulatory mechanisms to maintain pathway homeostasis. Our results also indicate that induction of Phe supply and enhancement of PAL activity are both effective strategies to increase carbon flux into the phenylpropanoid network.</p><p>In this interdisciplinary project, we have taken various system biology approaches to understand metabolic flux towards lignin, the second most abundant carbon sink in nature. We have combined isotope labeling aided flux measurements and mathematical simulation, and have integrated metabolome data with transcriptome profiles. The experiments and analysis have been conducted in both wild-type Arabidopsis and those with perturbed lignification. The novel work not only provides insight into our knowledge of phenylpropanoid metabolism, but also creates a framework to systematically assemble gene expression, enzyme activity, and metabolite accumulation to study metabolic fluxes, the ultimate functional phenotypes of biochemical networks.</p>
6

Understanding the supply and demand of critical materials for clean energy technologies: An agent based modeling approach

Jinjian Cao (11766404) 03 December 2021 (has links)
<div>With the rapid development of clean energy technologies, various bottlenecks on supplies of related critical materials emerged. Since supply chains of critical materials often involved with multiple layers of markets with different characteristics, to better identify bottlenecks and increase critical material availability, it is vital to have better understanding and projection on these markets.</div><div>Agent-based modeling is a bottom-up approach that can imitate heterogenous objects in a changing environment. Therefore, it is an excellent tool to simulate markets with fierce competition and fast revolution. This work demonstrates the application of agent-based modeling by discussing three different topics related to critical material demand and supply induced by clean energy products.</div><div>The first application focused on LED residential lighting market. LED lighting market grew rapidly and introduced potential demand on several critical materials including indium. The work modeled consumers as heterogenous and irrational agents in network purchasing new bulbs based</div>
7

Strategic Business and IT Alignment Assessment : A Modeling Approach Associated with Enterprise Architecture

Plazaola Prado, José Leonel January 2009 (has links)
Information Technology (IT) systems are pervasive tools for contemporary enterprises to achieve their mission and goals. A key issue for a well-functioning enterprise is to keep business and IT strategies aligned as they continuously evolve. Although many practitioners and researchers offer business and IT alignment theories and approaches there is no silver bullet solution for all the issues involved in Strategic Business and IT Alignment (SBITA), which is still ranked amongst the five top enterprise executives? concerns year after year. In this thesis two SBITA assessment methods are presented. The first is the Organization-wide Approach for Assessing SBITA, developed as an enhancement of Jerry N. Luftman's SBITA assessment approach in terms of measurability, traceability and organizational involvement. The second is the Alignment Metamodel Assessment Method (AMAM). Both methods are based on well established references and approaches and they are presented with systematic documentation for their application and reusability as shown in the included papers and reported case studies. This is a composite thesis that, besides the introduction, includes five papers (papers A-E). Paper A describes Luftman's SBITA assessment approach and its enhancement in terms of measurability, traceability and organizational involvement, the proposed Organization-wide Approach for Assessing SBITA. Results from applying this approach in two case studies in companies in Sweden and Nicaragua are also included. Paper B describes the AMAM. It explains how a metamodel is deduced and how the SBITA assessment will be performed. This paper argues that the AMAM can be affiliated to the EA discipline as a guide or reference for identifying the relevant EA?s representations for the SBITA concern, mitigating the expenses and drawbacks of the often larger modeling required in applying EA frameworks. Paper C shows a weighting of the importance of the SBITA topics, taking as reference the Henderson &amp; Venkatraman Strategic Alignment Model (SAM) - the basis of Luftman?s SBITA assessment approach -by relating it to the relevant and highly cited references in the field of SBITA. Paper D explains the criteria and the process for associating the AMAM artifacts with the Zachman´s Enterprise Architecture Framework and reports the pattern of association into the EA dominion. Paper E reports the details of the processes and results of applying the developed AMAM in a case study conducted in an intensive IT services enterprise in Nicaragua. / QC 20100805
8

Programming by demonstration of robot manipulators

Skoglund, Alexander January 2009 (has links)
If a non-expert wants to program a robot manipulator he needs a natural interface that does not require rigorous robot programming skills. Programming-by-demonstration (PbD) is an approach which enables the user to program a robot by simply showing the robot how to perform a desired task. In this approach, the robot recognizes what task it should perform and learn how to perform it by imitating the teacher. One fundamental problem in imitation learning arises from the fact that embodied agents often have different morphologies. Thus, a direct skill transfer from human to a robot is not possible in the general case. Therefore, we need a systematic approach to PbD that takes the capabilities of the robot into account–regarding both perception and body structure. In addition, the robot should be able to learn from experience and improve over time. This raises the question of how to determine the demonstrator’s goal or intentions. We show that this is possible–to some degree–to infer from multiple demonstrations. We address the problem of generation of a reach-to-grasp motion that produces the same results as a human demonstration. It is also of interest to learn what parts of a demonstration provide important information about the task. The major contribution is the investigation of a next-state-planner using a fuzzy time-modeling approach to reproduce a human demonstration on a robot. We show that the proposed planner can generate executable robot trajectories based on a generalization of multiple human demonstrations. We use the notion of hand-states as a common motion language between the human and the robot. It allows the robot to interpret the human motions as its own, and it also synchronizes reaching with grasping. Other contributions include the model-free learning of human to robot mapping, and how an imitation metric ca be used for reinforcement learning of new robot skills. The experimental part of this thesis presents the implementation of PbD of pick-and-place-tasks on different robotic hands/grippers. The different platforms consist of manipulators and motion capturing devices.
9

Pertinence de l’agriculture de conservation pour tamponner les aléas climatiques : cas des systèmes de culture en riz pluvial au lac Alaotra, Madagascar / Can conservation agriculture buffer climate hazard : the case of upland rice cropping systems in the Lake Alaotra region of Madagascar

Bruelle, Guillaume 19 December 2014 (has links)
En Afrique sub-saharienne (ASS), l'agriculture de conservation (AC) est diffusée afin de d'améliorer durablement la productivité de l'agriculture familiale. Cette AC est basée sur les principes de travail réduit du sol, d'une couverture permanente et de rotations introduisant des légumineuse. Parmi tous les bénéfices potentiels de l'AC, le mulch peut améliorer le bilan hydrique et tamponner le stress hydrique, et donc sécuriser les rendements, lorsque les pluies sont limitées et/ou aléatoirement distribuées. A Madagascar, la région du lac Alaotra connaît une forte expansion de la riziculture pluviale. Etant caractérisée par une distribution des pluies très erratique, la pratique de l'AC semble pertinente pour sécuriser la production pluviale. L'objectif de cette étude est donc d'évaluer dans quelle mesure cet aléa climatique est tamponné par l'AC. Tout d'abord, à travers revue de la littérature scientifique, nous avons ouvert à une problématique plus large. En effet, au regard des projections de croissance démographique et de changement climatique (CC) en ASS, l'AC est proposée comme solution ‘climate-smart' ; i.e. une agriculture capable d'augmenter la productivité et de s'adapter au CC tout en l'atténuant. Les études identifiées en ASS montrent une capacité de l'AC à augmenter les rendements sur le long-terme, et à plus court-terme dans les contextes climatiques où les pluies sont faibles et/ou mal distribuées. Cela suggère donc une capacité de l'AC à s'adapter au CC qui prévoit une augmentation de la variabilité de la distribution des pluies en ASS. La capacité de l'AC à atténuer le CC en séquestrant du carbone (C) dans les sols reste en suspens car le stockage du C se fait principalement en surface et la stabilité de ce C est questionnée. Nous nous sommes ensuite recentrés sur le sujet et la zone de cette étude afin d'évaluer le potentiel de l'AC à tamponner l'aléa pluviométrique. En se basant sur les données de suivi de parcelles en transition vers l'AC sur quatre saisons contrastées, nous avons constaté une augmentation des rendements moyens en riz pluvial dès la première année de pratique, avec une augmentation progressive des rendements et une diminution de la variabilité. Les données ont également suggéré une sécurisation des semis précoces et tardifs en AC. Nous avons constaté un poids important du climat sur la variabilité des rendements dans la zone d'étude. Cette analyse exploratoire nous a donc permis d'observer des effets positifs de l'AC dans le contexte climatique du lac Alaotra, suggérant notamment un effet potentiel sur la ressource hydrique. Mais les informations à notre disposition ne nous ont pas permis de vérifier cette hypothèse. Nous nous sommes donc intéressés à l'impact du mulch sur le bilan hydrique et les rendements en riz pluvial dans les conditions agro-climatiques de la zone d'étude. Nous avons effectué une expérimentation virtuelle, en utilisant le modèle PYE-CA. Nous avons confirmé la capacité du mulch à réduire le ruissellement. Nous avons identifié les dates de semis pour lesquelles le riz pluvial est le moins impacté par le stress hydrique dans la région. Les résultats nous ont indiqué que pour les dates de semis majoritairement pratiquées par les agriculteurs, et dans un éventail de conditions de sol, la disponibilité en eau est très peu affectée par une modification du ruissellement. Les bénéfices d'une réduction du ruissellement apparaissent dans des conditions hydriques plus stressantes telles que des dates de semis précoce ou une intensification, en diminuant la variabilité des rendements. Cette étude nous a permis de mieux appréhender les impacts de l'AC sur le bilan hydrique dans le contexte climatique de notre zone d'étude. Pour faire sens, ces résultats sont à intégrer à l'échelle exploitation, voire plus large, pour identifier les contraintes et avantages induits par les systèmes en AC dans le contexte socio-économique du lac Alaotra. / Conservation agriculture (CA) is widely disseminated at large scale in sub-Saharan Africa (SSA) in order to restore soil fertility and sustainably increase crop production of family farming. As defined by the FAO, CA is based on the three principles of minimal soil disturbance, permanent soil cover, and complex crop rotation. Among all the beneficial functions of CA, its ability to improve water balance through mulching can buffer water stress during crop cycle, and hence secure yields when rainfall are limited or poorly distributed. In the Lake Alaotra region of Madagascar, the area under rainfed upland rice has expanded lately. The region being characterized by an erratic rainfall distribution, intra- and inter-annually, CA practice seems appropriate to secure rainfed production. The main objective of this study is to evaluate to which extent this climate hazard can be buffered through the practice of CA. Firstly, we ran a review of the scientific literature to better understand the impact of CA in a wider context. Regarding the projections of population growth and climate change for SSA, CA is considered as a climate-smart option, i.e. an agriculture able to simultaneously mitigate climate change, adapt to this change, and sustainably increase productivity. The different studies illustrated the capacity of CA to maintain, or even increase production in the long-term, and in the shorter-term under limited or poorly distributed rainfall African contexts. These results suggested an ability of CA to adapt to climate change, predicting an increase in rainfall variability in SSA. However, the climate change mitigation through carbon sequestration under CA remained unclear because of a superficial storage which may be unsteady. Then, we focused on the study area to evaluate the potential of CA to buffer rainfall hazard. Using a 4-year dataset monitoring farmers' fields transitioning to CA, we observed a gradual increase in upland rice average yield with a decrease in variability over the consecutive years of CA practice. The data also suggested a capacity of CA to secure early or late sowing. But agro-environmental factors were mainly impacting yields in the region. This exploratory analysis allowed us to observe positive impacts of CA under the climate conditions of the Lake Alaotra region, suggesting an impact on water balance but no information was available to validate this hypothesis. Finally, we focused more precisely on the impact of mulch on water balance and upland rice yields under the climate conditions of the region, using a modeling approach. We ran an virtual experiment with the model PYE-CA to simulate a range of soil and climate conditions met in the region. We confirmed the ability of mulch to reduce, or even suppress, efficiently surface water runoff. We identified the sowing period within which rice growing would be the least impacted by water stress in the region. The results indicated that water availability for rice cropping was slightly impacted by a decrease in runoff for the majority of soil conditions and farmers' usual sowing dates. Beneficial effects of runoff reduction appeared under higher water stress conditions such as early sowing date or crop intensification and yield variability was decreased. This study allowed us to better apprehend the impacts of CA on water balance in the specific climate context of the study area. It would be interesting to integrate these results at the farm-level to identify the pros and cons of adopting CA under the socio-economic context of the Lake Alaotra region of Madagascar.
10

Dynamics of Coupled Human-Water Infrastructure Systems Under Water Main Breaks and Water-Rates Increase Events

Hamed Zamenian (8781884) 30 April 2020 (has links)
<p>The aging water infrastructure system in the United States has posed considerable hindrance to policy-makers as they seek to provide safe, reliable, and clean drinking water for communities. The deterioration of the physical water infrastructure negatively affects the economics of water utilities and can lead to increases in water rates for consumers, so that utilities can recover the financial losses. However, the dynamics emerging from the interactions among changes in water service reliability, water-rates, consumer behavior (with respect to water consumption and willingness to support water-rate changes in response to changes in water rates, and water utility economics, are still unknown factors in the management of water infrastructure systems. </p> <p>The overarching objective of this dissertation is the creation and demonstration of the dynamics of coupled human and water infrastructure systems under conditions of water main breaks and water-rate increases. First, using water-main break data for a 21-year period from two U.S. cities in the Great Lakes region, the dissertation demonstrates a methodology to estimate the system-wide monthly frequency of water main breaks as a function of a number of explanatory variables. Using a random-parameters negative-binomial approach, the statistical estimations show that pipe diameters, average pipe age, distribution of pipe age, pipe material, time of year, and mean monthly temperature all have a significant impact on monthly water main break frequencies. The results can assist asset managers in quantifying the effect of factors may have on the likelihood of water main breaks, as well as in making cost-effective decisions regarding pipe renewal.</p> <p>Next, by incorporating qualitative survey data and using quantitative econometric methods, consumer behaviors in responses to the water-rate increases, and based on perceptions of water service reliability and quality in a Midwestern U.S. city was evaluated. Using a multivariate binary probit approach, the results provide insights as to how individuals are likely to respond to water-rate increases based on the reliability of current water services and the quality of the supplied water. The outputs of the econometric enable utility managers to better understand the behavior of consumers under different rate conditions and help water utilities in their long-term and short-term financial analyses.</p> <p>Finally, the aforementioned two components are integrated into the interdependency analysis to evaluate the interactive effects of features of the physical water infrastructure (pipeline characteristics, water and associated energy losses, and the revenue loss for water utilities) and the behavior of stakeholders (water utilities and consumers). The developed hybrid system dynamics and agent-based model examines interdependencies between the physical water infrastructure, the water utility, and the water consumers to explore possible emergent behavior patterns of water users during water rate increases over time. The model is demonstrated over the 2001–2010 period on a case study city with a large water distribution system that includes 4,000 miles of pipeline and nine water treatment plants serving a population of 863,000. This model was then verified and validated throughout the development of simulation models and included the following steps: 1) data validity, 2) conceptual model validity, 3) computerized model validity, and 4) operational validity. The results suggest the simulated behavior of the model was reasonable and the output of the simulation model regrading water main break frequency, amount of water and associated energy losses, generated revenue, and payoff periods for implementing proactive maintenance strategies had the accuracy required for the model’s intended purpose. </p> <p>The framework developed in this doctoral study can be applied to different size classifications of cities, as well as different classifications of utility companies (such as electricity and gas) by updating the parameters in the model to reflect the characteristics of the infrastructure system components. The distinctive methodological approach in this doctoral work could capture the emergent behaviors of human-water infrastructure interactions such as the impact of increasing water-rates on residential consumers, the impact of water price elasticity cascading into the water utility revenue, and the impact of residential consumers’ water consumption on water utility revenues. In conclusion, the results of this doctoral research can assist asset managers in understanding their systems, identify pathways for growing revenue through reducing non-revenue water and increasing water-rates, and implementing a proactive pipeline asset management program towards the provision for safe, reliable, and clean drinking water.</p>

Page generated in 0.4757 seconds