• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

INVESTIGATING THE ROLES OF PHENYLPROPANOID PATHWAY IN PLANT DEFENSE AGAINST PATHOGEN ATTACK

2012 November 1900 (has links)
The plant phenylpropanoid pathway is initiated from deamination of phenylalanine to form cinnamic acid followed by hydroxylation and methylation of the aromatic ring to generate a variety of phenolic compounds including lignin monomers, flavonoid compounds and sinapate esters. The incorporation of phenylpropanoid metabolism served as a key step in the early land-colonization of plants from aqueous environment since phenolic compounds play important roles in plant development and abiotic/biotic stress responses. Lignin is a heteropolymer of hydroxycinnamyl alcohols that are derived from the major branch of plant phenylpropanoid pathway. The main function of lignin is to enhance the strength of plant cell wall and waterproof the vascular system for long-distance transportation of water and solutes. In addition, lignin is also involved in protecting plants against pathogen attack. My Ph.D. research is to investigate how lignin biosynthesis contributes to plant immunity. The results showed that the expression of major lignin biosynthetic genes was induced upon host fungal pathogen infection. Moreover, a mutant disrupted in the lignin gene F5H1 showed enhanced susceptibility when challenged with several fungal pathogens. F5H1 encodes a ferulic acid 5-hydroxylase that is uniquely present in angiosperm plants, leading to the biosynthesis of syringyl lignin monomer, which is not present in gymnosperm plants. Subsequent research demonstrated that f5h1 mutation impaired the penetration (pre-invasion) resistance but did not impact post-invasion resistance. Furthermore, the pathogen-induced expression of lignin genes was independent of well-characterized defensive signaling pathways, and regulated by a novel regulating mechanism. F5H1 contributes to pmr2-mediated resistance but acts independently of other molecular components of penetration resistance including PEN1, PEN2, and PEN3. In contrast to f5h1, a knockout mutant of flavonoid pathway gene chalcone isomerase (CHI/TT5) showed enhanced resistance to host anthracnose pathogen Colletotrichum higginsianum in a salicylic acid (SA)-dependent manner. Taken together, our results for the first time provide genetic evidence demonstrating that lignin biosynthetic gene F5H1 plays critical roles in plant penetration resistance and that an uncharted pathway in flavonoid metabolism confers an SA-dependent resistance pathway in Arabidopsis.
2

DEVELOPMENT OF SEQUENCE-SPECIFIC MOLECULAR MARKERS BASED ON PHENYLPROPANOID PATHWAY GENES FOR RESISTANCE TO FUSARIUM GRAMINEARUM [SCHWABE] IN ZEA MAYS (L.)

Martin, Christopher Joseph 30 September 2011 (has links)
The fungus Fusarium graminearum (Schwabe) causes Gibberella ear rot in maize, resulting in accumulation of harmful mycotoxins in the grain. Disease severity and pericarp/aleurone dehydrodiferulic acid content are negatively correlated. Furthermore, quantitative trait locus mapping (QTL) identified colocalization between QTL for both traits. A candidate gene approach was employed to identify the genes responsible for the observed colocalization. Candidate genes selected on the basis of their putative involvement in various aspects of cell wall DFA accumulation were mapped in silico using the maize genome sequence. Polymorphisms were discovered in putative genes and converted to molecular markers. The in silico mapping effort was successful in predicting map locations of the analyzed sequences, and the segregation of certain marker alleles could explain variation for Gibberella ear rot severity and pericarp-aleurone DFA content.
3

Measuring and Modeling of Phenylpropanoid Metabolic Flux in Arabidopsis

Peng Wang (5930384) 12 October 2021 (has links)
<p>Plants naturally deposit a significant amount of carbon towards lignin, a polymer that imparts mechanical strength to cell walls but impedes our utilization of the polysaccharides in lignocellulosic biomass. Genetic engineering of lignin has demonstrated profound success in improving the processing of the biomass. Lignin is derived from the phenylpropanoid pathway, the architecture of which is well understood based upon the biochemical and genetic studies conducted to date. In contrast, we lack a systematic and quantitative view of the factors that determine carbon flux into and within this branched metabolic pathway in plants. To explore the control of carbon allocation for phenylalanine and lignin biosynthesis, we have developed a kinetic model of the pathway in Arabidopsis to test the regulatory role of several key enzymatic steps. We first established a <sup>13</sup>C isotope feeding system for the measurement of flux using excised wild-type Arabidopsis stems. The excised stems continued to grow and lignify in our feeding system. When ring <sup>13</sup>C<sub>6</sub>-labeled phenylalanine ([<sup>13</sup>C<sub>6</sub>]-Phe) was supplied to excised stems, isotope label was rapidly incorporated into soluble intermediates and lignin. Using this approach, we then analyzed metabolite pool sizes and isotope abundances of the pathway intermediates in a time course from stems fed with [<sup>13</sup>C<sub>6</sub>]-Phe of different concentrations, and used these data to parameterize a kinetic model constructed with Michaelis-Menten kinetics. Our model of the general phenylpropanoid pathway captured the dynamic trends of metabolite pools <i>in vivo</i>and predicted the metabolic profiles of an independent feeding experiment. Based on the model simulation, we found that subcellular sequestration of pathway intermediates is necessary to maintain lignification homeostasis when metabolites are over-accumulated. Both the measurements and simulation suggested that theavailability of substrate Phe is one limiting factor for lignin flux in developing stems. This finding indicates new gene targets for lignin manipulation in plants. To extend our kinetic model to simulate flux distribution in response to genetic perturbations, we conducted an RNA-sequencing experiment in wild type and 13 plants with modified lignification, and integrated the transcriptional data with the metabolic profiles. We found that the biosynthesis of Phe and lignification are tightly coordinated at transcriptional level. The coregulation of the shikimate and phenylpropanoid pathways involves transcriptional and post-translational regulatory mechanisms to maintain pathway homeostasis. Our results also indicate that induction of Phe supply and enhancement of PAL activity are both effective strategies to increase carbon flux into the phenylpropanoid network.</p><p>In this interdisciplinary project, we have taken various system biology approaches to understand metabolic flux towards lignin, the second most abundant carbon sink in nature. We have combined isotope labeling aided flux measurements and mathematical simulation, and have integrated metabolome data with transcriptome profiles. The experiments and analysis have been conducted in both wild-type Arabidopsis and those with perturbed lignification. The novel work not only provides insight into our knowledge of phenylpropanoid metabolism, but also creates a framework to systematically assemble gene expression, enzyme activity, and metabolite accumulation to study metabolic fluxes, the ultimate functional phenotypes of biochemical networks.</p>

Page generated in 0.093 seconds