• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Measuring and Modeling of Phenylpropanoid Metabolic Flux in Arabidopsis

Peng Wang (5930384) 12 October 2021 (has links)
<p>Plants naturally deposit a significant amount of carbon towards lignin, a polymer that imparts mechanical strength to cell walls but impedes our utilization of the polysaccharides in lignocellulosic biomass. Genetic engineering of lignin has demonstrated profound success in improving the processing of the biomass. Lignin is derived from the phenylpropanoid pathway, the architecture of which is well understood based upon the biochemical and genetic studies conducted to date. In contrast, we lack a systematic and quantitative view of the factors that determine carbon flux into and within this branched metabolic pathway in plants. To explore the control of carbon allocation for phenylalanine and lignin biosynthesis, we have developed a kinetic model of the pathway in Arabidopsis to test the regulatory role of several key enzymatic steps. We first established a <sup>13</sup>C isotope feeding system for the measurement of flux using excised wild-type Arabidopsis stems. The excised stems continued to grow and lignify in our feeding system. When ring <sup>13</sup>C<sub>6</sub>-labeled phenylalanine ([<sup>13</sup>C<sub>6</sub>]-Phe) was supplied to excised stems, isotope label was rapidly incorporated into soluble intermediates and lignin. Using this approach, we then analyzed metabolite pool sizes and isotope abundances of the pathway intermediates in a time course from stems fed with [<sup>13</sup>C<sub>6</sub>]-Phe of different concentrations, and used these data to parameterize a kinetic model constructed with Michaelis-Menten kinetics. Our model of the general phenylpropanoid pathway captured the dynamic trends of metabolite pools <i>in vivo</i>and predicted the metabolic profiles of an independent feeding experiment. Based on the model simulation, we found that subcellular sequestration of pathway intermediates is necessary to maintain lignification homeostasis when metabolites are over-accumulated. Both the measurements and simulation suggested that theavailability of substrate Phe is one limiting factor for lignin flux in developing stems. This finding indicates new gene targets for lignin manipulation in plants. To extend our kinetic model to simulate flux distribution in response to genetic perturbations, we conducted an RNA-sequencing experiment in wild type and 13 plants with modified lignification, and integrated the transcriptional data with the metabolic profiles. We found that the biosynthesis of Phe and lignification are tightly coordinated at transcriptional level. The coregulation of the shikimate and phenylpropanoid pathways involves transcriptional and post-translational regulatory mechanisms to maintain pathway homeostasis. Our results also indicate that induction of Phe supply and enhancement of PAL activity are both effective strategies to increase carbon flux into the phenylpropanoid network.</p><p>In this interdisciplinary project, we have taken various system biology approaches to understand metabolic flux towards lignin, the second most abundant carbon sink in nature. We have combined isotope labeling aided flux measurements and mathematical simulation, and have integrated metabolome data with transcriptome profiles. The experiments and analysis have been conducted in both wild-type Arabidopsis and those with perturbed lignification. The novel work not only provides insight into our knowledge of phenylpropanoid metabolism, but also creates a framework to systematically assemble gene expression, enzyme activity, and metabolite accumulation to study metabolic fluxes, the ultimate functional phenotypes of biochemical networks.</p>
2

Use of metabolomics and 13C-labeling approaches to elucidate pathways involved in oil synthesis of pennycress (Thlaspi arvense L.) embryos

Tsogtbaatar, Enkhtuul January 2017 (has links)
No description available.
3

Plant and soil microbial responses to drought stress in different ecosystems: the importance of maintaining the continuum

von Rein, Isabell 31 July 2017 (has links)
Der Klimawandel bedroht Ökosysteme auf der ganzen Welt. Besonders der Anstieg in Länge, Intensität und Häufigkeit von Dürren kann bedeutenden Einfluss auf den globalen Kohlenstoffkreislauf haben. Die Frage, ob Pflanzen und Mikroorganismen anfällig gegenüber ökologischem Stress wie Dürren sind, wurde bereits in vielen Studien für verschiedene Ökosysteme und mit verschiedenen Ansätzen untersucht, aber Analysen von Dürreauswirkungen, die ober- und unterirdische Interaktionen von Pflanzen und Mikroorganismen mit einbeziehen, sind eher selten. Deshalb wird in der vorliegenden Studie die Frage erörtert, wie Trockenheit und/oder Hitze die Interaktionen von Pflanzen und Mikroorganismen in Bezug auf ihre Kohlenstoff-Verbindung beeinflussen. Dies dient zur Bestimmung der Stärke der Pflanze-Mikroorganismen-Kohlenstoff-Verbindung, wenn das Ökosystem an seine Grenzen gebracht wird. Der Fokus liegt deshalb auf durch Trockenstress und Hitze hervorgerufenen Veränderungen in der ober-unterirdischen Kohlenstoff-Dynamik in zwei vom Klimawandel bedrohten Ökosystemen. Es wurde untersucht, wie extreme Klimaereignisse, deren Häufigkeit in Zukunft weiter ansteigen soll, die Kohlenstoff-Verbindung zwischen Pflanzen und Mikroorganismen beeinflusst und wie mikrobielle Gemeinschaften unter diesen Umständen reagieren, um die Resistenz und Reaktionsmechanismen von Ökosystemen im zukünftigen Klimawandel besser vorhersagen zu können. In Kapitel 4 wurde ein Buchenwaldunterholz-Ökosystem untersucht. Buchenwaldmonolithen wurden einem extremen Klimaereignis (Trockenheit und/oder Hitze) ausgesetzt. Die Stärke der Pflanze-Mikroorganismen-Kohlenstoff-Verbindung und Veränderungen in der mikrobiellen Gemeinschaftsstruktur und -aktivität wurden mithilfe von stabilen 13C Isotopenmethoden und Ansätzen auf molekularer Basis, wie 16S rRNA- und Phospholipid-Analysen, bestimmt. In Kapitel 5 wurde ein kleines aquatisches Ökosystems untersucht. Zwei emerse aquatische Makrophyten, Phragmites australis und Typha latifolia, wurden in einem Mesokosmos-Experiment mit Sediment aus einem Soll einer einmonatigen Dürre ausgesetzt. Mithilfe einer 13CO2 Pulsmarkierung, sowie PLFA- und nicht-strukturbildenden Kohlenhydrat-Analysen wurde Kohlenstoff von den Blättern in die Wurzeln bis ins Sediment verfolgt, wo er teilweise in mikrobielle Phospholipide eingebaut wird. Diese Studie hat gezeigt, dass die zwei untersuchten Ökosysteme Trockenstress und Hitze relativ gut widerstehen können, zumindest kurzfristig, und dass das Kohlenstoff-Kontinuum, beziehungsweise die Verbindung zwischen ober- und unterirdischen Gemeinschaften, auch unter starkem Stress intakt bleibt. Zusammenfassend scheint es, dass Ökosysteme stark von einem funktionierenden Pflanze-Boden/Sediment-Mikroorganismen Kohlenstoff-Kontinuum abhängen und versuchen, es auch unter starkem Stress zu erhalten, was möglicherweise dazu beiträgt, dem Anstieg von extremen Dürreperioden aufgrund des Klimawandels besser zu widerstehen. / Climate change is threatening ecosystems around the world. Especially the increase in duration, intensity, and frequency of droughts can have a considerable impact on the global carbon cycle. The question whether plants and microbes are susceptible to environmental stress like drought has been assessed in many studies for different ecosystem types and by using numerous approaches, but research on drought effects that includes above- and belowground interactions is rather scarce. Therefore, the present study assesses the question of how drought and/or heat influence the interactions of plants and microbes, especially the carbon coupling, in order to determine the strength of plant-microbe carbon linkages when an ecosystem is pushed to its limits. The focus of this study thus lies on changes in aboveground-belowground carbon dynamics and the subsequent effects on the soil microbial community under drought and/or heat stress in two climate-threatened ecosystems. It was evaluated how extreme climate events, that are predicted to be more frequent in the near future, affect the carbon coupling between plants and microorganisms and how microbial communities respond under these circumstances, in order to be able to better predict ecosystem resistance and response mechanisms under future climate change. In chapter 4 a beech forest understory ecosystem was investigated. An extreme climate event (drought and/or heat) was imposed on beech forest monoliths and the strength of the plant-microbe carbon linkages and changes in the microbial community structure and activity were determined by using stable 13C isotope techniques and molecular-based approaches like 16S rRNA and microbial phospholipid-derived fatty acid (PLFA) analysis. In chapter 5 a small aquatic ecosystems was investigated. Two emergent aquatic macrophytes, Phragmites australis and Typha latifolia, were grown on kettle hole sediment and then exposed to a month-long summer drought in a mesocosm experiment. By conducting a 13CO2 pulse labeling as well as PLFA and non-structural carbohydrate analyses, the fate of carbon was traced from the plant leaves to the roots and into the sediment, where some of the recently assimilated carbon is incorporated into microbial PLFAs. Overall, this study showed that the two investigated ecosystems can endure environmental stress like heat and drought relatively well, at least in the short-term, and that the carbon continuum, or the linkage between above- and belowground communities, remained intact even under severe stress. In conclusion, it seems that ecosystems strongly depend on and try to maintain a functional plant-soil/sediment microorganism carbon continuum under drought, which might help to withstand the increase in extreme drought events under future climate change.

Page generated in 0.0706 seconds