Spelling suggestions: "subject:"modelo dde membrana"" "subject:"modelo dde jembrana""
1 |
Modelagem do potencial elétrico através da membrana do neurônio ganglionar e células de neuroblastoma: efeitos das cargas superficiais. / Modeling the eletric potential across the ganglion neuron membrane and neuroblastoma's cells: effects of the surface chargesThiago Matos Pinto 12 May 2010 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / O objetivo do presente trabalho é comparar, do ponto de vista elétrico, a membrana do neurônio ganglionar com a da célula de neuroblastoma, analisando os efeitos das
cargas fixas sobre o potencial elétrico nas superfícies da bicamada lipídica e também sobre o comportamento do perfil de potencial através da membrana, considerando as condiçõesfísico-químicas do estado de repouso e do estado de potencial de ação. As condições para a ocorrência dos referidos estados foram baseadas em valores numéricos de parâmetros elétricos e químicos, característicos dessas células, obtidos na literatura. O neurônio ganglionar exemplifica um neurônio sadio, e a célula de neuroblastoma, que é uma célula tumoral, exemplifica um neurônio patológico, alterado por esta condição. O neuroblastoma é um tumor que se origina das células da crista neural (neuroblastos), que é uma estrutura embrionária que dá origem a muitas partes do sistema nervoso, podendo surgir
em diversos locais do organismo, desde a região do crânio até a área mais inferior da coluna. O modelo adotado para simular a membrana de neurônio inclui: (a) as distribuições espaciais de cargas elétricas fixas no glicocálix e na rede de proteínas citoplasmáticas; (b) as distribuições de cargas na solução eletrolítica dos meios externo e interno; e (c) as cargas superficiais da bicamada lipídica. Os resultados que obtivemos
mostraram que, nos estados de repouso e de ação, os potenciais superficiais da bicamada interno (ÁSbc) e externo (ÁSgb) da célula de neuroblastoma não sofrem alteração
mensurável, quando a densidade de carga na superfície interna (QSbc) torna-se 50 vezes mais negativa, tanto para uma densidade de carga na superfície externa da bicamada nula (QSgb = 0), como para um valor de QSgb 6= 0. Porém, no estado de repouso, uma leve queda em ÁSbc do neur^onio ganglionar pode ser observada com este nível de variação de carga, sendo que ÁSgb do neurônio ganglionar é mais negativo quando QSgb = 1=1100 e/A2. No estado de ação, para QSgb = 0, o aumento da negatividade de QSbc não provoca alteração detectável de ÁSbc e ÁSgb para os dois neurônios. Quando consideramos QSgb = 1=1100 e/A2, ÁSgb do neurônio ganglionar se torna mais negativo, não se observando variações detectáveis nos potenciais superficiais da célula de neuroblastoma. Tanto no repouso quanto
no estado de ação, ÁSgb das duas células não sofre variação sensível com o aumento da negatividade da carga fixa distribuída espacialmente no citoplasma. Já a ÁSbc sofre uma
queda gradativa nos dois tipos celulares; porém, no estado de ação, esta queda é mais rápida. Descobrimos diferenças importantes nos perfis de potencial das duas células,
especialmente na região do glicocálix. / The aim of our work is to compare, from the electrical point of view, the ganglion neuron membrane with the neuroblastoma cell's membrane, analyzing the effects of fixed charges on the electric potential of the surfaces of the lipidic bilayer and on the behavior of the potential profile across the membrane, considering the physicochemical conditions of the resting state and of the action potential state. The conditions for the occurrence of these states were defined, based on numerical values of electrical and chemical parameters of these cells, obtained in the literature. The ganglion neuron portrays a healthy neuron,and the neuroblastoma cell, which is a tumor cell, represents a pathologic neuron, different
from the ganglion cell, due to this condition. A neuroblastoma is a tumor, originated from neural crest cells (neuroblasts), which is an embryonic structure that gives rise to many parts of the nervous system and can arise in various body sites, from the region of the skull all the way to the lower spinal column area.The model used to simulate the neuron membrane includes: (a) the spatial distribution of the fixed electric charges on the glycocalyx and on the network of cytoplasmic proteins; (b) the distribution of the charges in the electrolytic solution of outer and inner resources; and (c) the surface charges of the lipidic bilayer. The results we obtained show that, in the resting and action states, the inner (ÁSbc) and outer (ÁSgb) surface potential of neuroblastoma cells do not change measurably, when the charge density on the inner surface (QSbc) becomes 50 times more negative, for both null charge density on the outer surface (QSgb = 0) and for QSgb 6= 0. However, a slight drop in ÁSbc of a ganglion neuron can be observed with this level of charge variation, but ÁSgb of ganglion neuron is more negative when QSgb = 1=1100 e/A2. At action potential state, for QSgb = 0, the negative increase of QSbc does not measurably change ÁSbc and ÁSgb , for both neurons. When we
consider QSgb = 1=1100 e/A2, for the ganglion neuron ÁSgb becomes more negative, with no significant detectable changes in the neuroblastoma cell's surface potentials. At the resting and action states, ÁSgb of both cells does not undergo substantial changes with the negative increasing of fixed charges uniformly distributed in the cytoplasm. However,ÁSbc undergoes a gradual decrease in both cell types, although for the action state, this fall is faster. We discovered important dierences among the potential profile of the two cells, especially in the glicocalyx region.
|
2 |
Modelagem do potencial elétrico através da membrana do neurônio ganglionar e células de neuroblastoma: efeitos das cargas superficiais. / Modeling the eletric potential across the ganglion neuron membrane and neuroblastoma's cells: effects of the surface chargesThiago Matos Pinto 12 May 2010 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / O objetivo do presente trabalho é comparar, do ponto de vista elétrico, a membrana do neurônio ganglionar com a da célula de neuroblastoma, analisando os efeitos das
cargas fixas sobre o potencial elétrico nas superfícies da bicamada lipídica e também sobre o comportamento do perfil de potencial através da membrana, considerando as condiçõesfísico-químicas do estado de repouso e do estado de potencial de ação. As condições para a ocorrência dos referidos estados foram baseadas em valores numéricos de parâmetros elétricos e químicos, característicos dessas células, obtidos na literatura. O neurônio ganglionar exemplifica um neurônio sadio, e a célula de neuroblastoma, que é uma célula tumoral, exemplifica um neurônio patológico, alterado por esta condição. O neuroblastoma é um tumor que se origina das células da crista neural (neuroblastos), que é uma estrutura embrionária que dá origem a muitas partes do sistema nervoso, podendo surgir
em diversos locais do organismo, desde a região do crânio até a área mais inferior da coluna. O modelo adotado para simular a membrana de neurônio inclui: (a) as distribuições espaciais de cargas elétricas fixas no glicocálix e na rede de proteínas citoplasmáticas; (b) as distribuições de cargas na solução eletrolítica dos meios externo e interno; e (c) as cargas superficiais da bicamada lipídica. Os resultados que obtivemos
mostraram que, nos estados de repouso e de ação, os potenciais superficiais da bicamada interno (ÁSbc) e externo (ÁSgb) da célula de neuroblastoma não sofrem alteração
mensurável, quando a densidade de carga na superfície interna (QSbc) torna-se 50 vezes mais negativa, tanto para uma densidade de carga na superfície externa da bicamada nula (QSgb = 0), como para um valor de QSgb 6= 0. Porém, no estado de repouso, uma leve queda em ÁSbc do neur^onio ganglionar pode ser observada com este nível de variação de carga, sendo que ÁSgb do neurônio ganglionar é mais negativo quando QSgb = 1=1100 e/A2. No estado de ação, para QSgb = 0, o aumento da negatividade de QSbc não provoca alteração detectável de ÁSbc e ÁSgb para os dois neurônios. Quando consideramos QSgb = 1=1100 e/A2, ÁSgb do neurônio ganglionar se torna mais negativo, não se observando variações detectáveis nos potenciais superficiais da célula de neuroblastoma. Tanto no repouso quanto
no estado de ação, ÁSgb das duas células não sofre variação sensível com o aumento da negatividade da carga fixa distribuída espacialmente no citoplasma. Já a ÁSbc sofre uma
queda gradativa nos dois tipos celulares; porém, no estado de ação, esta queda é mais rápida. Descobrimos diferenças importantes nos perfis de potencial das duas células,
especialmente na região do glicocálix. / The aim of our work is to compare, from the electrical point of view, the ganglion neuron membrane with the neuroblastoma cell's membrane, analyzing the effects of fixed charges on the electric potential of the surfaces of the lipidic bilayer and on the behavior of the potential profile across the membrane, considering the physicochemical conditions of the resting state and of the action potential state. The conditions for the occurrence of these states were defined, based on numerical values of electrical and chemical parameters of these cells, obtained in the literature. The ganglion neuron portrays a healthy neuron,and the neuroblastoma cell, which is a tumor cell, represents a pathologic neuron, different
from the ganglion cell, due to this condition. A neuroblastoma is a tumor, originated from neural crest cells (neuroblasts), which is an embryonic structure that gives rise to many parts of the nervous system and can arise in various body sites, from the region of the skull all the way to the lower spinal column area.The model used to simulate the neuron membrane includes: (a) the spatial distribution of the fixed electric charges on the glycocalyx and on the network of cytoplasmic proteins; (b) the distribution of the charges in the electrolytic solution of outer and inner resources; and (c) the surface charges of the lipidic bilayer. The results we obtained show that, in the resting and action states, the inner (ÁSbc) and outer (ÁSgb) surface potential of neuroblastoma cells do not change measurably, when the charge density on the inner surface (QSbc) becomes 50 times more negative, for both null charge density on the outer surface (QSgb = 0) and for QSgb 6= 0. However, a slight drop in ÁSbc of a ganglion neuron can be observed with this level of charge variation, but ÁSgb of ganglion neuron is more negative when QSgb = 1=1100 e/A2. At action potential state, for QSgb = 0, the negative increase of QSbc does not measurably change ÁSbc and ÁSgb , for both neurons. When we
consider QSgb = 1=1100 e/A2, for the ganglion neuron ÁSgb becomes more negative, with no significant detectable changes in the neuroblastoma cell's surface potentials. At the resting and action states, ÁSgb of both cells does not undergo substantial changes with the negative increasing of fixed charges uniformly distributed in the cytoplasm. However,ÁSbc undergoes a gradual decrease in both cell types, although for the action state, this fall is faster. We discovered important dierences among the potential profile of the two cells, especially in the glicocalyx region.
|
3 |
Nanopartículas de magnetita polidispersa estabilizadas em lipídios e aplicadas em modelos de membranaBarreto, Geisi Rojas January 2013 (has links)
Orientador: Frank Nelson Crespilho / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Nanociências e Materiais Avançados, 2013
|
4 |
Estudos da interação de peptídeos antimicrobianos com modelo de membrana por simulações de dinâmica molecular / Studies of the interaction of antimicrobial peptides with model membrane for molecular dynamics simulationsTavares, Rafaela Magalhães [UNESP] 01 March 2016 (has links)
Submitted by Rafaela Magalhães Tavares null (rafaelarmt@yahoo.com.br) on 2016-04-19T11:40:30Z
No. of bitstreams: 1
RAFAELA MAGALHAES TAVARES - DISSERTAÇÃO.pdf: 2642568 bytes, checksum: d735adb9c5a571ebaf0a5f7274658a8b (MD5) / Approved for entry into archive by Juliano Benedito Ferreira (julianoferreira@reitoria.unesp.br) on 2016-04-26T12:34:50Z (GMT) No. of bitstreams: 1
tavares_rm_me_sjrp.pdf: 2642568 bytes, checksum: d735adb9c5a571ebaf0a5f7274658a8b (MD5) / Made available in DSpace on 2016-04-26T12:34:50Z (GMT). No. of bitstreams: 1
tavares_rm_me_sjrp.pdf: 2642568 bytes, checksum: d735adb9c5a571ebaf0a5f7274658a8b (MD5)
Previous issue date: 2016-03-01 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Nos últimos anos, o interesse por estudar peptídeos com atividade antimicrobiana e anticâncer tem aumentado consideravelmente. Neste trabalho, direcionamos nossos estudos para os peptídeos antimicrobianos da classe dos matoparanos extraídos do veneno da vespa social Polybia paulista: o Polybia-MP III (MP-III), Polybia-MP I (MP-I) e seu sintético análogo, o Asn2-Polybia-MP I (NMP-I). Com o objetivo de estudar a interação desses peptídeos com um modelo de membrana composta por lipídeos do tipo POPC (Palmitoil-Oleil-Fosfatidil-Colina) em solução aquosa, realizamos dois tipos de simulações de Dinâmica Molecular (DM). Primeiramente, foram realizadas simulações no equilíbrio com a finalidade de amostrar o comportamento geral do sistema. Em seguida, para investigarmos especificamente o processo de adsorção do peptídeo à bicamada, realizamos simulações de DM com a utilização do método Adaptive Biasing Force (ABF), o que nos permitiu calcular o perfil de energia livre desse processo. Dentre os três peptídeos estudados, o que mais se destacou com relação a sua interação com o modelo de membrana, na simulação no equilíbrio, foi o peptídeo MP-I, por ser o único a se adsorver na bicamada com 200ns de simulação. Com a utilização do método ABF, verificamos que a posição mais estável para cada peptídeo é a posição na qual estes estão paralelos à face da bicamada, com a face hidrofóbica de cada peptídeo voltada para o interior da membrana, e a face hidrofílica voltada para o meio aquoso. Além disso, os resíduos hidrofílicos estão em contato com o grupo polar dos fosfolipídeos e com a água, e o resíduo de triptofano encontra-se posicionado na interface hidrofóbica/hidrofílica. Os resultados obtidos na simulação no equilíbrio para o peptídeo MP-I, que foi o único a se adsorver na bicamada, estão de acordo com os resultados obtidos pelo método ABF, e ambos concordam com resultados experimentais da literatura. / In recent years, interest in studying peptides with antimicrobial and anti-cancer activity has increased considerably. In this study, we focus our studies on antimicrobial peptides of the mastoparans class extracted from the venom of the social wasp Polybia paulista: the Polybia-MP III (MP III), Polybia-MP I (MP-I) and its synthetic analogue, the Asn2-Polybia-MP I (NMP-I). In order to study the interaction of these peptides with a model of membrane composed of POPC (Palmitoyl-Oleoyl-Phosphatidyl-Choline) lipids type in aqueous solution, we conducted two types of molecular dynamics simulations (MD). At first, a balance system simulation was performed in order to get a sampling of the general behavior of the system. Then, to investigate the adsorption of the peptide to the bilayer, MD simulations using Adaptive Biasing Force (ABF) method was performed, which allowed us to calculate the free energy profile of this process. Among the three studied peptides, the MP-I peptide was the one that stood out related to its interaction with the membrane model, in the simulation on balance, for being the one to adsorb the bilayer with simulation of 200ns. Using the ABF method, we verified that the most stable position for each peptide is the position in which they are parallel to the surface of the bilayer with the hydrophobic side of each peptide facing into the membrane, and the hydrophilic side facing the aqueous solution. In addition, the hydrophilic residues are in contact with the polar group of the phospholipid and water, and the tryptophan residue is positioned on the hydrophobic/hydrophilic interface. The results of the simulation in balance for the MP-I peptide, which was the only adsorbed in the bilayer, are in agreement with the results obtained by the method ABF, and both agree with experimental results in the literature.
|
Page generated in 0.0721 seconds