Spelling suggestions: "subject:"modelo dos sapos"" "subject:"nodelo dos sapos""
1 |
Análise de campo médio para um modelo epidêmico via passeios aleatórios em um grafo / Mean-field analysis of an epidemic model via random walks on a graphGava, Renato Jacob 28 September 2007 (has links)
Estudamos sistemas de passeios aleatórios sobre os vértices de um grafo completo. Inicialmente há uma partícula em cada vértice do grafo das quais somente uma está ativa, as outras estão inativas. A partícula ativa realiza um passeio aleatório simples a tempo discreto com tempo de vida que depende do passado do processo, movendo-se ao longo de elos. Quando uma partícula ativa encontra uma inativa, esta se ativa; quando salta sobre um vértice já visitado, morre. O objetivo desta dissertação é estudar a cobertura do grafo completo, ou seja, a proporção de vértices visitados ao fim do processo, quando o número $n$ de vértices tende ao infinito. Analisamos as equações de campo médio para o processo descrito acima, comparando os seus resultados com os do modelo aleatório. Aqui, os resultados do campo médio parecem reproduzir os do modelo aleatório. Depois, apresentamos um estudo similar entre o modelo estocástico e as equações de campo médio para o caso em que cada partícula possui 2 vidas. Finalmente, observamos a cobertura do grafo completo para as equações de campo médio quando o número de vidas por partículas é maior que dois. / We study random walks systems on complete graphs. Initially there is a particle at each vertex of the graph; only one is active and the other are inactive. An active particle performs a discrete-time simple random walk with lifetime depending on the past of the process moving along edges. When an active particle hits an inactive one, the latter is activated. When it jumps on a vertex which has been visited before it dies. The goal of this work is to study the coverage of the complete graph, that is, the proportion of visited vertices at the end of the process, when the number of vertices goes to infinity. We analyze the mean field equations to the process cited above, comparing their results with the ones of the random model. Here the results of the mean field approach seem to reproduce the ones of the random model. After we present a similar study between the stochastic model and mean field approximation to the case that each particle has 2 lifes. Finally we observe the coverage of the complete graph to the mean-field equations when the number of lifes by particle is bigger than two.
|
2 |
Não monotonicidade do parâmetro crítico no modelo dos sapos / Non monotonicity of the critical parameter in the Frog ModelLeichsenring, Alexandre Ribeiro 18 February 2003 (has links)
Estudamos um modelo de passeios aleatórios simples em grafos, conhecido como modelo dos sapos. Esse modelo pode ser descrito de maneira geral da seguinte forma: existem partículas ativas e partículas desativadas num grafo G. Cada partícula ativa desempenha um passeio aleatório simples a tempo discreto e a cada momento ela pode morrer com probabilidade 1-p. Quando uma partícula ativa entra em contato com uma partícula desativada, esta é ativada e também passa a realizar, de maneira independente, um passeio aleatório pelo grafo. Apresentamos limites superior e inferior para o parâmetro crítico de sobrevivência do modelo dos sapos na árvore, e demonstramos que este parâmetro crítico não é uma função monótona do grafo em que está definido. / We study a system of simple random walks on graphs, known as frog model. This model can be described generally speaking as follows: there are active and sleeping particles living on some graph G. Each particle performs a simple random walk with discrete time and at each moment it may disappear with probability 1 - p. When an active particle hits a sleeping particle, the latter becomes active and starts to perform, independently, a simple random walk on the graph. We present lower and upper bounds for the surviving critical parameter on the tree, and we show that this parameter is not a monotonic function of the graph it is defined on.
|
3 |
Análise de campo médio para um modelo epidêmico via passeios aleatórios em um grafo / Mean-field analysis of an epidemic model via random walks on a graphRenato Jacob Gava 28 September 2007 (has links)
Estudamos sistemas de passeios aleatórios sobre os vértices de um grafo completo. Inicialmente há uma partícula em cada vértice do grafo das quais somente uma está ativa, as outras estão inativas. A partícula ativa realiza um passeio aleatório simples a tempo discreto com tempo de vida que depende do passado do processo, movendo-se ao longo de elos. Quando uma partícula ativa encontra uma inativa, esta se ativa; quando salta sobre um vértice já visitado, morre. O objetivo desta dissertação é estudar a cobertura do grafo completo, ou seja, a proporção de vértices visitados ao fim do processo, quando o número $n$ de vértices tende ao infinito. Analisamos as equações de campo médio para o processo descrito acima, comparando os seus resultados com os do modelo aleatório. Aqui, os resultados do campo médio parecem reproduzir os do modelo aleatório. Depois, apresentamos um estudo similar entre o modelo estocástico e as equações de campo médio para o caso em que cada partícula possui 2 vidas. Finalmente, observamos a cobertura do grafo completo para as equações de campo médio quando o número de vidas por partículas é maior que dois. / We study random walks systems on complete graphs. Initially there is a particle at each vertex of the graph; only one is active and the other are inactive. An active particle performs a discrete-time simple random walk with lifetime depending on the past of the process moving along edges. When an active particle hits an inactive one, the latter is activated. When it jumps on a vertex which has been visited before it dies. The goal of this work is to study the coverage of the complete graph, that is, the proportion of visited vertices at the end of the process, when the number of vertices goes to infinity. We analyze the mean field equations to the process cited above, comparing their results with the ones of the random model. Here the results of the mean field approach seem to reproduce the ones of the random model. After we present a similar study between the stochastic model and mean field approximation to the case that each particle has 2 lifes. Finally we observe the coverage of the complete graph to the mean-field equations when the number of lifes by particle is bigger than two.
|
4 |
Um limitante superior para a probabilidade crítica do modelo dos sapos em árvores homogêneas / An upper bound for the critical probability of the frog model on homogeneous treesÉlcio Lebensztayn 18 August 2005 (has links)
Estudamos o modelo dos sapos na árvore homogênea, um sistema de partículas a tempo discreto cuja dinâmica é sintetizada a seguir. No instante inicial, existe em cada vértice da árvore um número aleatório independente e identicamente distribuído de partículas; aquelas posicionadas em um vértice fixado estão ativas, as demais inativas. Partículas ativas realizam passeios aleatórios simples, independentes, a tempo discreto, com probabilidade de desaparecimento (1 - p) em cada instante. Uma partícula inativa torna-se ativa assim que seu vértice é visitado por uma partícula ativa. Consideramos nesta tese o valor crítico p_c que separa a fase em que o processo se extingue quase certamente da fase em que existem partículas ativas em todos os instantes com probabilidade positiva. Provamos um limitante superior para a probabilidade crítica p_c, o qual melhora o resultado anteriormente conhecido para o caso de configuração inicial de uma partícula por vértice. O argumento utilizado consiste na descrição do modelo dos sapos como um modelo de percolação orientada que domina processos de ramificação convenientemente definidos. Obtemos também o valor assintótico do limitante superior estabelecido, mostrando ser igual ao valor assintótico da probabilidade crítica. / We study the frog model on the homogeneous tree, a discrete-time particle system whose dynamics is summarized next. Initially there is an independent and identically distributed random number of particles at each vertex of the tree; those placed at a fixed vertex are active, the others being inactive. Active particles perform independent discrete-time simple random walks, with probability of disappearance (1 - p) at each instant. An inactive particle becomes active once its vertex is hit by an active particle. We consider in this thesis the critical value p_c that separates the phase in which the process dies out almost surely from the phase in which there exist active particles at all times with positive probability. We prove an upper bound for the critical probability p_c, which improves the formerly known result for the case of one particle per vertex initial configuration. The employed argument builds on the description of the frog model as an oriented percolation model which dominates suitably defined branching processes. We also obtain the asymptotic value of the stated upper bound, showing that it equals the asymptotic value of the critical probability.
|
5 |
Um limitante superior para a probabilidade crítica do modelo dos sapos em árvores homogêneas / An upper bound for the critical probability of the frog model on homogeneous treesLebensztayn, Élcio 18 August 2005 (has links)
Estudamos o modelo dos sapos na árvore homogênea, um sistema de partículas a tempo discreto cuja dinâmica é sintetizada a seguir. No instante inicial, existe em cada vértice da árvore um número aleatório independente e identicamente distribuído de partículas; aquelas posicionadas em um vértice fixado estão ativas, as demais inativas. Partículas ativas realizam passeios aleatórios simples, independentes, a tempo discreto, com probabilidade de desaparecimento (1 - p) em cada instante. Uma partícula inativa torna-se ativa assim que seu vértice é visitado por uma partícula ativa. Consideramos nesta tese o valor crítico p_c que separa a fase em que o processo se extingue quase certamente da fase em que existem partículas ativas em todos os instantes com probabilidade positiva. Provamos um limitante superior para a probabilidade crítica p_c, o qual melhora o resultado anteriormente conhecido para o caso de configuração inicial de uma partícula por vértice. O argumento utilizado consiste na descrição do modelo dos sapos como um modelo de percolação orientada que domina processos de ramificação convenientemente definidos. Obtemos também o valor assintótico do limitante superior estabelecido, mostrando ser igual ao valor assintótico da probabilidade crítica. / We study the frog model on the homogeneous tree, a discrete-time particle system whose dynamics is summarized next. Initially there is an independent and identically distributed random number of particles at each vertex of the tree; those placed at a fixed vertex are active, the others being inactive. Active particles perform independent discrete-time simple random walks, with probability of disappearance (1 - p) at each instant. An inactive particle becomes active once its vertex is hit by an active particle. We consider in this thesis the critical value p_c that separates the phase in which the process dies out almost surely from the phase in which there exist active particles at all times with positive probability. We prove an upper bound for the critical probability p_c, which improves the formerly known result for the case of one particle per vertex initial configuration. The employed argument builds on the description of the frog model as an oriented percolation model which dominates suitably defined branching processes. We also obtain the asymptotic value of the stated upper bound, showing that it equals the asymptotic value of the critical probability.
|
6 |
Não monotonicidade do parâmetro crítico no modelo dos sapos / Non monotonicity of the critical parameter in the Frog ModelAlexandre Ribeiro Leichsenring 18 February 2003 (has links)
Estudamos um modelo de passeios aleatórios simples em grafos, conhecido como modelo dos sapos. Esse modelo pode ser descrito de maneira geral da seguinte forma: existem partículas ativas e partículas desativadas num grafo G. Cada partícula ativa desempenha um passeio aleatório simples a tempo discreto e a cada momento ela pode morrer com probabilidade 1-p. Quando uma partícula ativa entra em contato com uma partícula desativada, esta é ativada e também passa a realizar, de maneira independente, um passeio aleatório pelo grafo. Apresentamos limites superior e inferior para o parâmetro crítico de sobrevivência do modelo dos sapos na árvore, e demonstramos que este parâmetro crítico não é uma função monótona do grafo em que está definido. / We study a system of simple random walks on graphs, known as frog model. This model can be described generally speaking as follows: there are active and sleeping particles living on some graph G. Each particle performs a simple random walk with discrete time and at each moment it may disappear with probability 1 - p. When an active particle hits a sleeping particle, the latter becomes active and starts to perform, independently, a simple random walk on the graph. We present lower and upper bounds for the surviving critical parameter on the tree, and we show that this parameter is not a monotonic function of the graph it is defined on.
|
Page generated in 0.0879 seconds