Spelling suggestions: "subject:"passeio aleatório"" "subject:"passeio aleatória""
1 |
Fenomenos de localização em passeio aleatorio com potencial aleatorioFreire, Marcelo Ventura 12 December 2000 (has links)
Orientador: Herve Jean François Guiol / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-07-27T13:18:35Z (GMT). No. of bitstreams: 1
Freire_MarceloVentura_M.pdf: 2175208 bytes, checksum: 56aa0943d3dcc28ab161f7039668dac1 (MD5)
Previous issue date: 2000 / Resumo: Esse trabalho estuda o fenômeno de localização do passeio aleatório S = (Sn; n ¿ Z) simples simétrico unidimensional quando da presença de um potencial aleatório dado pela interação aleatória Y = (Yn;n ¿ Z) e {-1,1}Z com o meio onde passeio se desenvolve e pelo parâmetro e ¿ [0,8] que mede a força desta interação e também confronta os casos dos passeios com e sem potencial aleatório. / Abstract: This work addresses the exponential localization of the symmetric simple random walk S = (Sn; n ¿ Z) with random potential given by the random interaction Y = (Yn;n ¿ Z) e {-1,1}Z with the environment in which the random walk flows and by the parameter e ¿ [0,8] which measures the strength of this interaction and, at last, the random walk with and without the interaction with the environment are compared. / Mestrado / Mestre em Estatística
|
2 |
A medida harmônica do cubo / The harmonic measure of the cubeCosta, Marcelo Rocha, 1989- 25 August 2018 (has links)
Orientador: Serguei Popov / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-25T09:42:00Z (GMT). No. of bitstreams: 1
Costa_MarceloRocha_M.pdf: 576974 bytes, checksum: 3b01a9f15e6e0f9fdd98631dc69cd202 (MD5)
Previous issue date: 2014 / Resumo: O problema considerado no presente trabalho cumpre o papel de reforçar a eficácia dos métodos apresentados nos capítulos introdutórios, bem como investiga a resposta de um problema até então não publicado na literatura especializada. Introduzimos uma partícula realizando um passeio aleatório simples no espaço, ou seja, uma partícula que a cada passo escolhe uniformemente um de seus vizinhos para onde irá saltar. Fixando sua posição inicial ao longo da fronteira do cubo, pergunta-se: qual é a probabilidade de que a trajetória de tal partícula nunca mais retorne ao cubo? Em outras palavras, se T é o tempo de primeiro retorno ao cubo, estamos interessados em descrever o comportamento assintótico da probabilidade de que T seja infinito / Abstract: It has been considered in this work a problem which play a role of showing the effectiveness of the content covered in the introductory chapters, as well as it is a unsolved problem across the specialized literature. We introduce a particle performing a simple random walk in space, i.e., a particle which at each step choose uniformly one of its neighbourhood sites to which it then jumps into. Fixed its initial position along the boundary of a cube, we are interested in answering the following question: what is the probability that such particle's trajectory will never reach the cube again. In other words, if T is the first return time to the cube, we aim to analyse the asymptotic behaviour of the probability that T is infinite / Mestrado / Estatistica / Mestre em Estatística
|
3 |
A fórmula de Russo e desigualdades de desacoplamento para entrelaçamentos aleatórios / Russo's formula and decoupling inequalities for random interlacementsBernardini, Diego Fernando de, 1986- 25 August 2018 (has links)
Orientador: Serguei Popov / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-25T10:22:43Z (GMT). No. of bitstreams: 1
Bernardini_DiegoFernandode_D.pdf: 1410086 bytes, checksum: b77a17aefd06d547f1c5db3c5cc1a8f7 (MD5)
Previous issue date: 2014 / Resumo: O modelo de entrelaçamentos aleatórios foi introduzido no sentido de se investigar originalmente o traço deixado por passeios aleatórios em grandes grafos e, basicamente, tal processo é descrito por um processo pontual de Poisson em um espaço de trajetórias duplamente infinitas de passeios aleatórios simples no reticulado d-dimensional, com dimensão d pelo menos igual a três. Neste sentido, o processo é caracterizado por um emaranhado aleatório de trajetórias deste tipo. Tal modelo possui ainda um parâmetro de intensidade, que controla, de certa forma, a quantidade de trajetórias que constituem o processo. Um problema relevante no contexto deste processo, e que tem sido amplamente estudado na literatura, diz respeito à caracterização da relação de dependência (através da covariância) entre os eventos denominados como crescentes neste modelo e suportados em subconjuntos disjuntos do reticulado, e é justamente este o problema no qual nos concentramos. Em uma primeira etapa neste trabalho, determinamos expressões explícitas para a derivada, com respeito ao parâmetro de intensidade, da probabilidade de um evento crescente e suportado em um subconjunto finito do reticulado, estabelecendo assim aquilo que denominamos como a fórmula de Russo para os entrelaçamentos aleatórios. A utilização desta denominação é justificada e motivada pelo amplamente conhecido termo original, que no contexto do modelo usual de percolação estabelece uma expressão para a derivada da probabilidade dos eventos definidos como crescentes naquele modelo. Em seguida, tentamos utilizar este resultado no sentido de estabelecer uma primeira abordagem para o problema da covariância entre os eventos crescentes, e esta investigação é baseada essencialmente em uma observação sobre o número esperado das trajetórias então denominadas como pivotais positivas para o evento de interesse. Por fim, estabelecemos uma nova abordagem para o mesmo problema, utilizando uma construção alternativa do processo de entrelaçamentos baseada na técnica dos soft local times, e investigando uma espécie de pivotalidade conjunta de coleções de excursões das trajetórias dos passeios aleatórios pelos conjuntos nos quais estão suportados os eventos de interesse. Justamente a partir desta abordagem obtemos nosso último resultado sobre a covariância. De forma geral, acreditamos que a investigação e a tentativa de obter uma caracterização cada vez mais precisa para a relação de dependência que mencionamos deve ajudar a entender o processo de entrelaçamentos e suas propriedades de forma cada vez mais clara / Abstract: The random interlacements model was originally introduced in order to investigate the trace left by random walks in large graphs and, basically, such process is described by a Poisson point process in a space of doubly infinite simple random walk trajectories in the d-dimensional lattice, with dimension d at least equal to three. In this sense, the process is characterized by a random tangle of trajectories of this kind. Such model also has an intensity parameter, which controls, in a certain sense, the quantity of trajectories that constitutes the process. A relevant issue in the context of this process, which has been largely studied in the literature, concerns the characterization of the dependence relation (through the covariance) between the so-called increasing events in this model, which are supported on disjoint subsets of the lattice, and this is precisely the issue on which we focus. In a first step in this work, we determine explicit expressions for the derivative, with respect to the intensity parameter, of the probability of an increasing event which is supported in a finite subset of the lattice, thus establishing what we call as Russo¿s formula for random interlacements. The use of this term is justified and motivated by the widely known original term, which, in the context of the usual percolation model, provides an expression for the derivative of the probability of events defined as increasing in that model. Then, we try to use this result to establish a first approach to the problem of the covariance between increasing events, and such investigation is essentially based in a fact about the expected number of the so-called positive pivotal (or plus pivotal) trajectories for the event of interest. Finally, we establish a new approach to the same problem by using an alternative construction of the interlacements process based on the technique of soft local times, and investigating a kind of joint "pivotality" of collections of excursions of the random walk trajectories, through the sets on which the events of interest are supported. From this approach we obtain our last result on the covariance. Overall, we believe that the investigation and the attempt to get an increasingly accurate characterization of the above mentioned dependence relation should help to understand the interlacements process and its properties in an increasingly clear way / Doutorado / Estatistica / Doutor em Estatística
|
4 |
Modelo distribuído para agregação de armazenamento em redes de sensores sem fio=Distributed model for storage aggregation in wireless sensor networks / Distributed model for storage aggregation in wireless sensor networksYakov Nae 20 August 2018 (has links)
Orientador: Lee Luan Ling / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-20T02:24:35Z (GMT). No. of bitstreams: 1
YakovNae_M.pdf: 7990917 bytes, checksum: 122c511d9ba839a2f1464fbe7fca09b4 (MD5)
Previous issue date: 2011 / Resumo: Gerência de armazenamento em Redes de Sensores Sem Fio (RSSF) é uma questão muito crítica. Além da RSSFs conter uma vasta quantidade de armazenamento agregada, ela não pode ser usada inteiramente. Portanto, o sistema inteiro falha quando o primeiro sensor tem sua capacidade de armazenamento esgotada, deixando uma grande capacidade de armazenamento inutilizada. Sugere-se que os sensores devem-se ser capazes de detectar as capacidades de armazenamentos inutilizadas, para prolongar as suas funcionalidades. Entretanto, em RSSF de larga escala isso pode ser muito difícil uma vez que os sensores podem não ter conhecimento da existência dos outros. Neste trabalho apresenta-se duas principais contribuições: otimização da capacidade total de armazenamento para RSSF em grande escala e uma nova abordagem de roteamento - Deterministic "Random" Walk (Passeio "Aleatório" Determinístico). Apresenta-se um novo modelo de armazenamento via construção "sob demanda" de Cadeias de Armazenamento Distribuídas ( Distributed Storage Chains (DSC). Estas cadeias representam parcerias entrem os sensores que podem compartilhar suas capacidades de armazenamento. Resultando, os sensores não estão sujeitos às suas limitações de armazenamento, mas para à capacidade total de armazenamento disponível no sistema. Constrói-se estas cadeia via passeio determinístico sobre a topologia sugerida. Todavia, mostra-se que estes passeios apresentam um comportamento aleatório que é muito eficiente em termos de localização de capacidade de armazenamento disponível / Abstract: Storage management of Wireless Sensor Networks (WSN) is a very critical issue in terms of system's lifetime. While WSNs host a vast storage capacity on the aggregate, that capacity cannot be used entirely. Eventually, the entire network may fail when the first sensor has its own storage capacity depleted, leaving behind a large amount of unutilized storage capacity. We suggest that sensors should be able to detect unutilized storage capacity in order to prolong their functionality. However, for large scale WSNs this can be a difficult task, since sensors may not be aware of the existence of others. This work has two main contributions: an optimization of the overall storage capacity for large scale WSNs and a novel routing approach of deterministic "random" walk. We present a new storage model by building "on - demand" Distributed Storage Chains (DSC). These chains represent partnership between sensors that share their storage capacity. As a result, sensors are no longer subjected to their own storage limitations but to the total amount of available storage in the WSN. We construct these chains via deterministic walks over our suggested topology. However, we show that these walks resemble the behavior of random walks and are therefore highly efficient in terms of locating available storage / Mestrado / Telecomunicações e Telemática / Mestre em Engenharia Elétrica
|
5 |
Análise de campo médio para um modelo epidêmico via passeios aleatórios em um grafo / Mean-field analysis of an epidemic model via random walks on a graphGava, Renato Jacob 28 September 2007 (has links)
Estudamos sistemas de passeios aleatórios sobre os vértices de um grafo completo. Inicialmente há uma partícula em cada vértice do grafo das quais somente uma está ativa, as outras estão inativas. A partícula ativa realiza um passeio aleatório simples a tempo discreto com tempo de vida que depende do passado do processo, movendo-se ao longo de elos. Quando uma partícula ativa encontra uma inativa, esta se ativa; quando salta sobre um vértice já visitado, morre. O objetivo desta dissertação é estudar a cobertura do grafo completo, ou seja, a proporção de vértices visitados ao fim do processo, quando o número $n$ de vértices tende ao infinito. Analisamos as equações de campo médio para o processo descrito acima, comparando os seus resultados com os do modelo aleatório. Aqui, os resultados do campo médio parecem reproduzir os do modelo aleatório. Depois, apresentamos um estudo similar entre o modelo estocástico e as equações de campo médio para o caso em que cada partícula possui 2 vidas. Finalmente, observamos a cobertura do grafo completo para as equações de campo médio quando o número de vidas por partículas é maior que dois. / We study random walks systems on complete graphs. Initially there is a particle at each vertex of the graph; only one is active and the other are inactive. An active particle performs a discrete-time simple random walk with lifetime depending on the past of the process moving along edges. When an active particle hits an inactive one, the latter is activated. When it jumps on a vertex which has been visited before it dies. The goal of this work is to study the coverage of the complete graph, that is, the proportion of visited vertices at the end of the process, when the number of vertices goes to infinity. We analyze the mean field equations to the process cited above, comparing their results with the ones of the random model. Here the results of the mean field approach seem to reproduce the ones of the random model. After we present a similar study between the stochastic model and mean field approximation to the case that each particle has 2 lifes. Finally we observe the coverage of the complete graph to the mean-field equations when the number of lifes by particle is bigger than two.
|
6 |
Análise de campo médio para um modelo epidêmico via passeios aleatórios em um grafo / Mean-field analysis of an epidemic model via random walks on a graphRenato Jacob Gava 28 September 2007 (has links)
Estudamos sistemas de passeios aleatórios sobre os vértices de um grafo completo. Inicialmente há uma partícula em cada vértice do grafo das quais somente uma está ativa, as outras estão inativas. A partícula ativa realiza um passeio aleatório simples a tempo discreto com tempo de vida que depende do passado do processo, movendo-se ao longo de elos. Quando uma partícula ativa encontra uma inativa, esta se ativa; quando salta sobre um vértice já visitado, morre. O objetivo desta dissertação é estudar a cobertura do grafo completo, ou seja, a proporção de vértices visitados ao fim do processo, quando o número $n$ de vértices tende ao infinito. Analisamos as equações de campo médio para o processo descrito acima, comparando os seus resultados com os do modelo aleatório. Aqui, os resultados do campo médio parecem reproduzir os do modelo aleatório. Depois, apresentamos um estudo similar entre o modelo estocástico e as equações de campo médio para o caso em que cada partícula possui 2 vidas. Finalmente, observamos a cobertura do grafo completo para as equações de campo médio quando o número de vidas por partículas é maior que dois. / We study random walks systems on complete graphs. Initially there is a particle at each vertex of the graph; only one is active and the other are inactive. An active particle performs a discrete-time simple random walk with lifetime depending on the past of the process moving along edges. When an active particle hits an inactive one, the latter is activated. When it jumps on a vertex which has been visited before it dies. The goal of this work is to study the coverage of the complete graph, that is, the proportion of visited vertices at the end of the process, when the number of vertices goes to infinity. We analyze the mean field equations to the process cited above, comparing their results with the ones of the random model. Here the results of the mean field approach seem to reproduce the ones of the random model. After we present a similar study between the stochastic model and mean field approximation to the case that each particle has 2 lifes. Finally we observe the coverage of the complete graph to the mean-field equations when the number of lifes by particle is bigger than two.
|
7 |
Limite superior sobre a probabilidade de confinamento de passeio aleatório em meio aleatório / Upper bound on the probability of confinement random walk in random environmentVásquez Mercedes, Claudia Edith, 1989- 05 February 2013 (has links)
Orientadores: Christophe Frédéric Gallesco, Serguei Popov / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-22T17:31:03Z (GMT). No. of bitstreams: 1
VasquezMercedes_ClaudiaEdith_M.pdf: 743991 bytes, checksum: 587d04d1b7b45c75dd5eeea766258b02 (MD5)
Previous issue date: 2013 / Resumo: O resumo poderá ser visualizado no texto completo da tese digital / Abstract: The abstract is available with the full electronic document / Mestrado / Estatistica / Mestra em Estatística
|
8 |
Transição de fase para um modelo de percolação dirigida na árvore homogênea / Phase transition for a directed percolation model on homogeneous treesUtria Valdes, Jaime Antonio, 1988- 27 August 2018 (has links)
Orientador: Élcio Lebensztayn / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-27T03:09:48Z (GMT). No. of bitstreams: 1
UtriaValdes_JaimeAntonio_M.pdf: 525263 bytes, checksum: 3a980748a98761becf1b573639a361c1 (MD5)
Previous issue date: 2015 / Resumo: O Resumo poderá ser visualizado no texto completo da tese digital / Abstract: The Abstract is available with the full electronic digital document / Mestrado / Estatistica / Mestre em Estatística
|
9 |
Passeios aleatórios estáveis em Z com taxas não-homogêneas e os processos quase-estáveis / Stable random walks on Z with inhomogeneous rates and quasistable processesWagner Barreto de Souza 18 December 2012 (has links)
Seja $\\mathcal X=\\{\\mathcal X_t:\\, t\\geq0,\\, \\mathcal X_0=0\\}$ um passeio aleatório $\\beta$-estável em $\\mathbb Z$ com média zero e com taxas de saltos não-homogêneas $\\{\\tau_i^: i\\in\\mathbb Z\\}$, com $\\beta\\in(1,2]$ e $\\{\\tau_i: i\\in\\mathbb Z\\}$ sendo uma família de variáveis aleatórias independentes com distribuição marginal comum na bacia de atração de uma lei $\\alpha$-estável, com $\\alpha\\in(0,2]$. Nesta tese, obtemos resultados sobre o comportamento do processo $\\mathcal X_t$ para tempos longos, em particular, obtemos seu limite de escala. Quando $\\alpha\\in(0,1)$, o limite de escala é um processo $\\beta$-estável mudado de tempo pela inversa de um outro processo, o qual envolve o tempo local do processo $\\beta$-estável e um independente subordinador $\\alpha$-estável; chamamos o processo resultante de processo quase-estável. Para o caso $\\alpha\\in[1,2]$, o limite de escala é um ordinário processo $\\beta$-estável. Para $\\beta=2$ e $\\alpha\\in(0,1)$, o limite de escala é uma quase-difusão com medida de velocidade aleatória estudada por Fontes, Isopi e Newman (2002). Outros resultados sobre o comportamento de $\\mathcal X$ para tempos longos são envelhecimento e localização. Nós obtemos resultados de envelhecimento integrado e não-integrado para $\\mathcal X$ quando $\\alpha\\in(0,1)$. Relacionado à esses resultados, e possivelmente de interesse independente, consideramos o processo de armadilha definido por $\\{\\tau_{\\mathcal X_t}: t\\geq0\\}$, e obtemos seu limite de escala. Concluímos a tese com resultados sobre localização de $\\mathcal X$. Mostramos que ele pode ser localizado quando $\\alpha\\in(0,1)$, e que não pode ser localizado quando $\\alpha\\in(1,2]$, assim estendendo os resultados de Fontes, Isopi e Newman (1999) para o caso de passeios simples simétricos. / Let $\\mathcal X=\\{\\mathcal X_t:\\, t\\geq0,\\, \\mathcal X_0=0\\}$ be a mean zero $\\beta$-stable random walk on $\\mathbb Z$ with inhomogeneous jump rates $\\{\\tau_i^: i\\in\\mathbb Z\\}$, with $\\beta\\in(1,2]$ and $\\{\\tau_i: i\\in\\mathbb Z\\}$ is a family of independent random variables with common marginal distribution in the basin of attraction of an $\\alpha$-stable law with $\\alpha\\in(0,2]$. In this thesis we derive results about the long time behavior of this process, in particular its scaling limit. When $\\alpha\\in(0,1)$, the scaling limit is a $\\beta$-stable process time-changed by the inverse of another process, involving the local time of the $\\beta$-stable process and an independent $\\alpha$-stable subordinator; the resulting process may be called a quasistable process. For the case $\\alpha\\in[1,2]$, the scaling limit is an ordinary $\\beta$-stable process. For $\\beta=2$ and $\\alpha\\in(0,1)$, the scaling limit is a quasidiffusion with random speed measure studied by Fontes, Isopi and Newman (2002). Other results about the long time behavior of $\\mathcal X$ concern aging and localization. We obtain integrated and non integrated aging results for $\\mathcal X$ when $\\alpha\\in(0,1)$. Related to these results, and possibly of independent interest, we consider the trap process defined as $\\{\\tau_{\\mathcal X_t}: t\\geq0\\}$, and derive its scaling limit. We conclude the thesis with results about localization of $\\mathcal X$. We show that it localizes when $\\alpha\\in(0,1)$, and does not localize when $\\alpha\\in(1,2]$, extending results of Fontes, Isopi and Newman (1999) for the simple symmetric case.
|
10 |
Passeios aleatórios estáveis em Z com taxas não-homogêneas e os processos quase-estáveis / Stable random walks on Z with inhomogeneous rates and quasistable processesSouza, Wagner Barreto de 18 December 2012 (has links)
Seja $\\mathcal X=\\{\\mathcal X_t:\\, t\\geq0,\\, \\mathcal X_0=0\\}$ um passeio aleatório $\\beta$-estável em $\\mathbb Z$ com média zero e com taxas de saltos não-homogêneas $\\{\\tau_i^: i\\in\\mathbb Z\\}$, com $\\beta\\in(1,2]$ e $\\{\\tau_i: i\\in\\mathbb Z\\}$ sendo uma família de variáveis aleatórias independentes com distribuição marginal comum na bacia de atração de uma lei $\\alpha$-estável, com $\\alpha\\in(0,2]$. Nesta tese, obtemos resultados sobre o comportamento do processo $\\mathcal X_t$ para tempos longos, em particular, obtemos seu limite de escala. Quando $\\alpha\\in(0,1)$, o limite de escala é um processo $\\beta$-estável mudado de tempo pela inversa de um outro processo, o qual envolve o tempo local do processo $\\beta$-estável e um independente subordinador $\\alpha$-estável; chamamos o processo resultante de processo quase-estável. Para o caso $\\alpha\\in[1,2]$, o limite de escala é um ordinário processo $\\beta$-estável. Para $\\beta=2$ e $\\alpha\\in(0,1)$, o limite de escala é uma quase-difusão com medida de velocidade aleatória estudada por Fontes, Isopi e Newman (2002). Outros resultados sobre o comportamento de $\\mathcal X$ para tempos longos são envelhecimento e localização. Nós obtemos resultados de envelhecimento integrado e não-integrado para $\\mathcal X$ quando $\\alpha\\in(0,1)$. Relacionado à esses resultados, e possivelmente de interesse independente, consideramos o processo de armadilha definido por $\\{\\tau_{\\mathcal X_t}: t\\geq0\\}$, e obtemos seu limite de escala. Concluímos a tese com resultados sobre localização de $\\mathcal X$. Mostramos que ele pode ser localizado quando $\\alpha\\in(0,1)$, e que não pode ser localizado quando $\\alpha\\in(1,2]$, assim estendendo os resultados de Fontes, Isopi e Newman (1999) para o caso de passeios simples simétricos. / Let $\\mathcal X=\\{\\mathcal X_t:\\, t\\geq0,\\, \\mathcal X_0=0\\}$ be a mean zero $\\beta$-stable random walk on $\\mathbb Z$ with inhomogeneous jump rates $\\{\\tau_i^: i\\in\\mathbb Z\\}$, with $\\beta\\in(1,2]$ and $\\{\\tau_i: i\\in\\mathbb Z\\}$ is a family of independent random variables with common marginal distribution in the basin of attraction of an $\\alpha$-stable law with $\\alpha\\in(0,2]$. In this thesis we derive results about the long time behavior of this process, in particular its scaling limit. When $\\alpha\\in(0,1)$, the scaling limit is a $\\beta$-stable process time-changed by the inverse of another process, involving the local time of the $\\beta$-stable process and an independent $\\alpha$-stable subordinator; the resulting process may be called a quasistable process. For the case $\\alpha\\in[1,2]$, the scaling limit is an ordinary $\\beta$-stable process. For $\\beta=2$ and $\\alpha\\in(0,1)$, the scaling limit is a quasidiffusion with random speed measure studied by Fontes, Isopi and Newman (2002). Other results about the long time behavior of $\\mathcal X$ concern aging and localization. We obtain integrated and non integrated aging results for $\\mathcal X$ when $\\alpha\\in(0,1)$. Related to these results, and possibly of independent interest, we consider the trap process defined as $\\{\\tau_{\\mathcal X_t}: t\\geq0\\}$, and derive its scaling limit. We conclude the thesis with results about localization of $\\mathcal X$. We show that it localizes when $\\alpha\\in(0,1)$, and does not localize when $\\alpha\\in(1,2]$, extending results of Fontes, Isopi and Newman (1999) for the simple symmetric case.
|
Page generated in 0.0864 seconds