• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 3
  • Tagged with
  • 25
  • 25
  • 25
  • 22
  • 22
  • 20
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Modelos lineares mistos e generalizados mistos em estudos de adaptação local e plasticidade fenotípica de Euterpe edulis / Linear mixed models and generalized mixed models applied in studies of local adaptation and phenotypic plasticity of Euterpe edulis

Ezequiel Abraham López Bautista 18 June 2014 (has links)
Este trabalho objetivou a avaliação da presença de plasticidade fenotípica e de adaptação local de três procedências de palmiteiro: Ombrófila Densa, Estacional Semidecidual e Restinga, em três locais no Estado de São Paulo: Parque Estadual da Ilha do Cardoso, Parque Estadual de Carlos Botelho e Estação Ecológica dos Caetetus, em ensaios de adaptação no estabelecimento (ou de semeadura) e de adaptação em juvenis (ou de crescimento). Os conjuntos de dados foram analisados utilizando estruturas de grupos de experimentos, com efeitos cruzados e aninhados. As variáveis relacionadas com a massa de matéria seca das plantas, nos dois ensaios, foram analisadas usando a abordagem de modelos lineares de efeitos mistos, por meio da incorporação de fatores de efeito aleatório, e fazendo uso do método da máxima verossimilhança restrita (REML) para estimação dos componentes de variância associados a tais fatores com um menor viés. Por outro lado, para a proporção de sementes germinadas, no ensaio de adaptação no estabelecimento, a análise estatística foi realizada a partir da abordagem dos modelos lineares generalizados mistos, sob a pressuposição de que a variável segue uma distribuição binomial, com função de ligação logito. O método da pseudo-verossimilhança foi empregado para obtenção da solução das equações de verossimilhança. Os resultados mostraram que as plantas originadas de sementes dos três biomas avaliados apresentaram um comportamento plástico, para todos os caracteres avaliados no ensaio de adaptação no estabelecimento. Com relação ao ensaio de adaptação em juvenis, a característica de plasticidade foi verificada somente para a massa de matéria seca da folha em plantas provenientes do bioma Estacional Semidecidual. A característica de adaptação local, apresentou-se de forma evidente no ensaio de adaptação no estabelecimento. Estes resultados evidenciaram que em cada local avaliado, as plantas originadas das sementes de diferentes procedências apresentaram um comportamento diferenciado nos caracteres relacionados à massa de matéria seca, podendo em alguns casos, tratar-se de adaptação local. Concluiu-se que os locais Carlos Botelho e Ilha do Cardoso são os mais favoráveis para a germinação das sementes de sua mesma procedência. / The aim of this work was to evaluate the presence of phenotypic plasticity and local adaptation of three provenances of the palm specie Euterpe edulis: Atlantic Rainforest, Seasonally Dry Forest and Restinga Forest, in permanent parcels inserted in three forest types of the São Paulo State (Brazil): Parque Estadual da Ilha do Cardoso, Parque Estadual de Carlos Botelho e Estação Ecológica dos Caetetus, in experiments of seedling establishment and juveniles plants growth. The data sets were analyzed using structures of groups of experiments, with crossed and nested effects. The variables related to dry matter content of plants in both assays were analyzed using linear mixed models (LMM) approach, through the incorporation of random effect factors, and using the restricted maximum likelihood method (REML) for estimation of variance components associated with these factors with a minor bias. On the other hand, germination proportion of the seeds at seedling establishment assay was analyzed using the generalized linear mixed models (GLMM) approach, under the assumption that the variable follows a binomial distribution, with logit link function. The pseudo-likelihood (PL) method was used to obtain the numerical solution of the likelihood equations. The results showed that, plants from seeds of the three biomes evaluated presented a plastic behavior for all characters assessed in the seedling establishment assay. In respect to juveniles adaptation assay, the phenotypic plasticity characteristic was observed only to the leaf dry matter content of plants from Seasonally Dry Forest biome. The local adaptation characteristic was clearly observed in the seedling establishment assay. These results showed that at each site evaluated, plants originating from seeds of different provenances exhibited different behavior on characters related to the dry matter content and may in some cases be local adaptation. It was concluded that locations Carlos Botelho and Ilha do Cardoso are the most favorable for seed germination of its same provenance.
22

Avaliação de técnicas de diagnóstico para a análise de dados com medidas repetidas / Evaluation of diagnostic techniques for the analysis of data with repeated measures

Kurusu, Ricardo Salles 26 April 2013 (has links)
Dentre as possíveis propostas encontradas na literatura estatística para analisar dados oriundos de estudos com observações correlacionadas, estão os modelos condicionais e os modelos marginais. Diversas técnicas têm sido propostas para a análise de diagnóstico nesses modelos. O objetivo deste trabalho é apresentar algumas das técnicas de diagnóstico disponíveis para os dois tipos de modelos e avaliá-las por meio de estudos de simulação. As técnicas apresentadas também foram aplicadas em um conjunto de dados reais. / Conditional and marginal models are among the possibilities in statistical literature to analyze data from studies with correlated observations. Several techniques have been proposed for diagnostic analysis in these models. The objective of this work is to present some of the diagnostic techniques available for both modeling approaches and to evaluate them by simulation studies. The presented techniques were also applied in a real dataset.
23

Structural equation models applied to quantitative genetics / Modelos de equações estruturais aplicados à genética quantitativa

Cerqueira, Pedro Henrique Ramos 03 September 2015 (has links)
Causal models have been used in different areas of knowledge in order to comprehend the causal associations between variables. Over the past decades, the amount of studies using these models have been growing a lot, especially those related to biological systems where studying and learning causal relationships among traits are essential for predicting the consequences of interventions in such system. Graph analysis (GA) and structural equation modeling (SEM) are tools used to explore such associations. While GA allows searching causal structures that express qualitatively how variables are causally connected, fitting SEM with a known causal structure allows to infer the magnitude of causal effects. Also SEM can be viewed as multiple regression models in which response variables can be explanatory variables for others. In quantitative genetics studies, SEM aimed to study the direct and indirect genetic effects associated to individuals through information related to them, beyond the observed characteristics, such as the kinship relations. In those studies typically the assumptions of linear relationships among traits are made. However, in some scenarios, nonlinear relationships can be observed, which make unsuitable the mentioned assumptions. To overcome this limitation, this paper proposes to use a mixed effects polynomial structural equation model, second or superior degree, to model those nonlinear relationships. Two studies were developed, a simulation and an application to real data. The first study involved simulation of 50 data sets, with a fully recursive causal structure involving three characteristics in which linear and nonlinear causal relations between them were allowed. The second study involved the analysis of traits related to dairy cows of the Holstein breed. Phenotypic relationships between traits were calving difficulty, gestation length and also the proportion of perionatal death. We compare the model of multiple traits and polynomials structural equations models, under different polynomials degrees in order to assess the benefits of the SEM polynomial of second or higher degree. For some situations the inappropriate assumption of linearity results in poor predictions of the direct, indirect and total of the genetic variances and covariance, either overestimating, underestimating, or even assign opposite signs to covariances. Therefore, we conclude that the inclusion of a polynomial degree increases the SEM expressive power. / Modelos causais têm sido muitos utilizados em estudos em diferentes áreas de conhecimento, a fim de compreender as associações ou relações causais entre variáveis. Durante as últimas décadas, o uso desses modelos têm crescido muito, especialmente estudos relacionados à sistemas biológicos, uma vez que compreender as relações entre características são essenciais para prever quais são as consequências de intervenções em tais sistemas. Análise do grafo (AG) e os modelos de equações estruturais (MEE) são utilizados como ferramentas para explorar essas relações. Enquanto AG nos permite buscar por estruturas causais, que representam qualitativamente como as variáveis são causalmente conectadas, ajustando o MEE com uma estrutura causal conhecida nos permite inferir a magnitude dos efeitos causais. Os MEE também podem ser vistos como modelos de regressão múltipla em que uma variável resposta pode ser vista como explanatória para uma outra característica. Estudos utilizando MEE em genética quantitativa visam estudar os efeitos genéticos diretos e indiretos associados aos indivíduos por meio de informações realcionadas aos indivíduas, além das característcas observadas, como por exemplo o parentesco entre eles. Neste contexto, é tipicamente adotada a suposição que as características observadas são relacionadas linearmente. No entanto, para alguns cenários, relações não lineares são observadas, o que torna as suposições mencionadas inadequadas. Para superar essa limitação, este trabalho propõe o uso de modelos de equações estruturais de efeitos polinomiais mistos, de segundo grau ou seperior, para modelar relações não lineares. Neste trabalho foram desenvolvidos dois estudos, um de simulação e uma aplicação a dados reais. O primeiro estudo envolveu a simulação de 50 conjuntos de dados, com uma estrutura causal completamente recursiva, envolvendo 3 características, em que foram permitidas relações causais lineares e não lineares entre as mesmas. O segundo estudo envolveu a análise de características relacionadas ao gado leiteiro da raça Holandesa, foram utilizadas relações entre os seguintes fenótipos: dificuldade de parto, duração da gestação e a proporção de morte perionatal. Nós comparamos o modelo misto de múltiplas características com os modelos de equações estruturais polinomiais, com diferentes graus polinomiais, a fim de verificar os benefícios do MEE polinomial de segundo grau ou superior. Para algumas situações a suposição inapropriada de linearidade resulta em previsões pobres das variâncias e covariâncias genéticas diretas, indiretas e totais, seja por superestimar, subestimar, ou mesmo atribuir sinais opostos as covariâncias. Portanto, verificamos que a inclusão de um grau de polinômio aumenta o poder de expressão do MEE.
24

Structural equation models applied to quantitative genetics / Modelos de equações estruturais aplicados à genética quantitativa

Pedro Henrique Ramos Cerqueira 03 September 2015 (has links)
Causal models have been used in different areas of knowledge in order to comprehend the causal associations between variables. Over the past decades, the amount of studies using these models have been growing a lot, especially those related to biological systems where studying and learning causal relationships among traits are essential for predicting the consequences of interventions in such system. Graph analysis (GA) and structural equation modeling (SEM) are tools used to explore such associations. While GA allows searching causal structures that express qualitatively how variables are causally connected, fitting SEM with a known causal structure allows to infer the magnitude of causal effects. Also SEM can be viewed as multiple regression models in which response variables can be explanatory variables for others. In quantitative genetics studies, SEM aimed to study the direct and indirect genetic effects associated to individuals through information related to them, beyond the observed characteristics, such as the kinship relations. In those studies typically the assumptions of linear relationships among traits are made. However, in some scenarios, nonlinear relationships can be observed, which make unsuitable the mentioned assumptions. To overcome this limitation, this paper proposes to use a mixed effects polynomial structural equation model, second or superior degree, to model those nonlinear relationships. Two studies were developed, a simulation and an application to real data. The first study involved simulation of 50 data sets, with a fully recursive causal structure involving three characteristics in which linear and nonlinear causal relations between them were allowed. The second study involved the analysis of traits related to dairy cows of the Holstein breed. Phenotypic relationships between traits were calving difficulty, gestation length and also the proportion of perionatal death. We compare the model of multiple traits and polynomials structural equations models, under different polynomials degrees in order to assess the benefits of the SEM polynomial of second or higher degree. For some situations the inappropriate assumption of linearity results in poor predictions of the direct, indirect and total of the genetic variances and covariance, either overestimating, underestimating, or even assign opposite signs to covariances. Therefore, we conclude that the inclusion of a polynomial degree increases the SEM expressive power. / Modelos causais têm sido muitos utilizados em estudos em diferentes áreas de conhecimento, a fim de compreender as associações ou relações causais entre variáveis. Durante as últimas décadas, o uso desses modelos têm crescido muito, especialmente estudos relacionados à sistemas biológicos, uma vez que compreender as relações entre características são essenciais para prever quais são as consequências de intervenções em tais sistemas. Análise do grafo (AG) e os modelos de equações estruturais (MEE) são utilizados como ferramentas para explorar essas relações. Enquanto AG nos permite buscar por estruturas causais, que representam qualitativamente como as variáveis são causalmente conectadas, ajustando o MEE com uma estrutura causal conhecida nos permite inferir a magnitude dos efeitos causais. Os MEE também podem ser vistos como modelos de regressão múltipla em que uma variável resposta pode ser vista como explanatória para uma outra característica. Estudos utilizando MEE em genética quantitativa visam estudar os efeitos genéticos diretos e indiretos associados aos indivíduos por meio de informações realcionadas aos indivíduas, além das característcas observadas, como por exemplo o parentesco entre eles. Neste contexto, é tipicamente adotada a suposição que as características observadas são relacionadas linearmente. No entanto, para alguns cenários, relações não lineares são observadas, o que torna as suposições mencionadas inadequadas. Para superar essa limitação, este trabalho propõe o uso de modelos de equações estruturais de efeitos polinomiais mistos, de segundo grau ou seperior, para modelar relações não lineares. Neste trabalho foram desenvolvidos dois estudos, um de simulação e uma aplicação a dados reais. O primeiro estudo envolveu a simulação de 50 conjuntos de dados, com uma estrutura causal completamente recursiva, envolvendo 3 características, em que foram permitidas relações causais lineares e não lineares entre as mesmas. O segundo estudo envolveu a análise de características relacionadas ao gado leiteiro da raça Holandesa, foram utilizadas relações entre os seguintes fenótipos: dificuldade de parto, duração da gestação e a proporção de morte perionatal. Nós comparamos o modelo misto de múltiplas características com os modelos de equações estruturais polinomiais, com diferentes graus polinomiais, a fim de verificar os benefícios do MEE polinomial de segundo grau ou superior. Para algumas situações a suposição inapropriada de linearidade resulta em previsões pobres das variâncias e covariâncias genéticas diretas, indiretas e totais, seja por superestimar, subestimar, ou mesmo atribuir sinais opostos as covariâncias. Portanto, verificamos que a inclusão de um grau de polinômio aumenta o poder de expressão do MEE.
25

Avaliação de técnicas de diagnóstico para a análise de dados com medidas repetidas / Evaluation of diagnostic techniques for the analysis of data with repeated measures

Ricardo Salles Kurusu 26 April 2013 (has links)
Dentre as possíveis propostas encontradas na literatura estatística para analisar dados oriundos de estudos com observações correlacionadas, estão os modelos condicionais e os modelos marginais. Diversas técnicas têm sido propostas para a análise de diagnóstico nesses modelos. O objetivo deste trabalho é apresentar algumas das técnicas de diagnóstico disponíveis para os dois tipos de modelos e avaliá-las por meio de estudos de simulação. As técnicas apresentadas também foram aplicadas em um conjunto de dados reais. / Conditional and marginal models are among the possibilities in statistical literature to analyze data from studies with correlated observations. Several techniques have been proposed for diagnostic analysis in these models. The objective of this work is to present some of the diagnostic techniques available for both modeling approaches and to evaluate them by simulation studies. The presented techniques were also applied in a real dataset.

Page generated in 0.0712 seconds