• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interaction domain in non-prestressed circular concrete bridge piers using simplified modified compression field theory

Abouelleil, Alaaeldin January 1900 (has links)
Master of Science / Department of Civil Engineering / Hayder Rasheed / The importance of the analysis of circular columns to accurately predict their ultimate confined capacity under shear-flexure-axial force interaction domain is recognized in light of the extreme load event imposed by the current AASHTO LRFD specification. In this study, various procedures for computing the shear strength are reviewed. Then, the current procedure adopted by AASHTO LRFD 2014, based on the simplified modified compression field theory, is evaluated for non-presetressed circular concrete bridge piers. This evaluation is benchmarked against experimental data available in the literature and against Response 2000 freeware program that depicts interaction diagrams based on AASHTO 1999 requirements. Differences in results are discussed and future improvements are proposed. A new approach is presented to improve the accuracy of AASHTO LRFD calculations. The main parameters that control the cross section shear strength are discussed based on the experimental results and comparisons.
2

Assessment of the new AASHTO design provisions for shear and combined shear/torsion and comparison with the equivalent ACI provisions

Halim, Abdul Halim January 1900 (has links)
Master of Science / Department of Civil Engineering / Asadollah Esmaeily / The shear and combined shear and torsion provisions of the AASHTO LRFD (2008) Bridge Design Specifications, as well as simplified AASHTO procedure for prestressed and non-prestressed reinforced concrete members were investigated and compared to their equivalent ACI 318-08 provisions. Response-2000, an analytical tool developed based on the Modified Compression Field Theory (MCFT), was first validated against the existing experimental data and then used to generate the required data for cases where no experimental data was available. Several normal and prestressed beams, either simply supported or continuous were used to evaluate the AASHTO and ACI shear design provisions In addition, the AASHTO LRFD provisions for combined shear and torsion were investigated and their accuracy was validated against the available experimental data. These provisions were also compared to their equivalent ACI code requirements. The latest design procedures in both codes propose exact shear-torsion interaction equations that can directly be compared to the experimental results by considering all ϕ factors as one. In this comprehensive study, different over-reinforced, moderately-reinforced, and under-reinforced sections with high-strength and normal-strength concrete for both solid and hollow sections were analyzed. The main objectives of this study were to: • Evaluate the shear and the shear-torsion procedures proposed by AASHTO LRFD (2008) and ACI 318-08 • Validate the code procedures against the experimental results by mapping the experimental points on the code-based exact interaction diagrams • Develop a MathCAD program as a design tool for sections subjected to shear or combined shear and torsion
3

Modelización de elementos lineales de hormigón armado incluyendo el efecto del esfuerzo cortante

Navarro Gregori, Juan 12 March 2010 (has links)
La gran mayoría de estructuras de hormigón armado compuestas por elementos lineales desarrolla esfuerzos combinados que incluyen el esfuerzo cortante. Además, algunos colapsos estructurales han sido debidos a situaciones de acoplamiento de esfuerzos que han llevado a la estructura a un fallo frágil a cortante. Por ello, resulta necesario disponer de modelos de análisis de elementos lineales que incluyan al efecto del esfuerzo cortante correctamente. El análisis y el dimensionamiento de las estructuras de hormigón armado se ha realizado tradicionalmente tratando por separado los esfuerzos aplicasdos. En la actualidad, existen pocos elementos unidimensionales de análisis no lineal que capten adecuadamente el efecto queproduce el esfuerzo cortante. La fisura diagonal, la transmisión del cortante a través de la armadura transversal o la zona no fisurada, y el fallo final del elemento, son aspectos que un modelos de cortante debe incluir eficazmente. El objetivo de esta tesis doctoral es el de modelizar el comportamiento resistente de elementos lineales de hormigón armado incluyendo el efecto del esfuerzo cortante. Se presenta un modelo teórico que considera simultáneamente los esfuerzos axil, flector y cortante. Se propone una nueva hipótesis cinemática para el comportamiento seccional que permite estudiar el efecto de acoplamiento entre las tensiones normales y tangenciales. Esta nueva hipótesis recibe el nombre de hipótesis cinemática para el comportamiento seccional que permite estudiar el efecto de acoplamiento entre las tensiones normales y tanagenciales. Esta nueva hipótesis de correción de cortante por ser el término dependiente del esfuerzo cortante el que se corrige. La hipótesis de corrección de cortante incluye una función de interpolación general, que configura el denominado modelo general de corrección de cortante. Además, se plantea otra función de interpolación más sencilla. / Navarro Gregori, J. (2010). Modelización de elementos lineales de hormigón armado incluyendo el efecto del esfuerzo cortante [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/7342 / Palancia
4

Behaviour of Shear-critical Reinforced Concrete Beams Retrofitted with Externally Applied Fibre-reinforced Polymers

Colalillo, Michael Anthony 11 December 2012 (has links)
Ageing infrastructure that is shear deficient and may be at risk of brittle collapse, particularly in seismically active regions, can be economically strengthened using externally bonded fibre-reinforced polymers (FRP). Although many studies have been conducted on small-scale specimens subject to monotonic loading, little experimental data exists for large-scale specimens and those tested under reversed cyclic loading to simulate a seismic event. An experimental study of large-scale (400 mm x 650 mm) beam specimens strengthened in shear with FRP was conducted to examine the effects of reversed cyclic loading and to quantify material shear strength contributions. Testing showed that FRP retrofits were highly effective at improving shear performance and were not adversely affected by reversed cyclic loading prior to the occurrence of flexural yielding. The shear resistance attributed to concrete was found to remain relatively consistent with reversed cyclic loading prior to flexural yielding, after which point concrete strength decay was apparent. The loss of concrete shear resistance directly influenced the rate of FRP straining and the achievable ductility. An analytical model using the Modified Compression Field Theory (MCFT) was developed for externally bonded FRP reinforcement to describe the experimental behaviour and to evaluate the accuracy of current FRP design methods. Failures were accurately modelled when appropriate FRP strain limits were used for the ultimate strength and for the stress transfer capacity across the shear crack. Proposed FRP strain limits were developed considering the strain distribution along the crack plane. In addition, improved strain limits incorporate the effect of rupture failure due to stress concentrations in the FRP wrapped around the beam corners. The proposed FRP formulations offer improved accuracy over the current FRP design methods (CSA S6-06 and ACI 440.2R-08), which suggest a broadly applied maximum strain limit of 0.004 mm/mm, which was determined to be overly conservative for FRP rupture failures.
5

Behaviour of Shear-critical Reinforced Concrete Beams Retrofitted with Externally Applied Fibre-reinforced Polymers

Colalillo, Michael Anthony 11 December 2012 (has links)
Ageing infrastructure that is shear deficient and may be at risk of brittle collapse, particularly in seismically active regions, can be economically strengthened using externally bonded fibre-reinforced polymers (FRP). Although many studies have been conducted on small-scale specimens subject to monotonic loading, little experimental data exists for large-scale specimens and those tested under reversed cyclic loading to simulate a seismic event. An experimental study of large-scale (400 mm x 650 mm) beam specimens strengthened in shear with FRP was conducted to examine the effects of reversed cyclic loading and to quantify material shear strength contributions. Testing showed that FRP retrofits were highly effective at improving shear performance and were not adversely affected by reversed cyclic loading prior to the occurrence of flexural yielding. The shear resistance attributed to concrete was found to remain relatively consistent with reversed cyclic loading prior to flexural yielding, after which point concrete strength decay was apparent. The loss of concrete shear resistance directly influenced the rate of FRP straining and the achievable ductility. An analytical model using the Modified Compression Field Theory (MCFT) was developed for externally bonded FRP reinforcement to describe the experimental behaviour and to evaluate the accuracy of current FRP design methods. Failures were accurately modelled when appropriate FRP strain limits were used for the ultimate strength and for the stress transfer capacity across the shear crack. Proposed FRP strain limits were developed considering the strain distribution along the crack plane. In addition, improved strain limits incorporate the effect of rupture failure due to stress concentrations in the FRP wrapped around the beam corners. The proposed FRP formulations offer improved accuracy over the current FRP design methods (CSA S6-06 and ACI 440.2R-08), which suggest a broadly applied maximum strain limit of 0.004 mm/mm, which was determined to be overly conservative for FRP rupture failures.
6

Shear cracks in reinforced concrete in serviceability limit state / Skjuvsprickor i armerad betong i bruksgränstillstånd

Chemlali, Alexander, Norberg, Rickard January 2015 (has links)
Shear cracks are formed when high oblique tensile stresses, e.g. in thin webs, exceed the tensile strength. A known example of this phenomenon is the extensive shear cracks that were found on the box-girder bridges Gröndal and Alvik, which were mainly caused by insufficient amount of shear reinforcement. In order to avoid this incident (inadequate amount of shear reinforcement), the reinforcement stress is often being assumed as a ultimate limit load in order to fulfill requirements regarding crack control in the service-ability limit state (SLS). This method has led to a overestimation of the reinforcement amount in bridge-design. The aim of this master thesis is therefor to study the shear crack phenomenon and investigate if the amount of shear reinforcement in bridges can be reduced. The first part of this thesis studies the shear cracking behavior in concrete in a plane stress state, while the second part focus how design standards as well as manuals treats shear cracks. Shear cracking in the reinforced concrete panels has been studied with non-linear finite element analysis and compared to experimental testings performed by the University of Toronto. Three different loading conditions for the panels has been analyzed: pureshear, compression or tension combined with shear. The panels are to represent parts of a web in a box-girder bridge that are subjected to in-plane stresses. The non-linear finite element analysis was performed in the FE-program Atena where mainly the crack propagation and crack pattern were studied. The material model in Atena is a smeared crack model with either fixed or rotated crack direction. The panel analysis, in SLS, gave various results. For loading conditions pure shear and tension/shear, the response of the FE-analysis gave a similar result regarding crack pattern but differed in size of crack width. For compression/shear, only micro-cracks developed and did not reflect the result from the real panel tests. This may be the consequence of a too stiff FE-model and the fact that, in the real tests, some cracks occurred due to out-of-plane bending. With methods described in Eurocode 2 and the Swedish handbook for EC2, a shear crack calculation model was created in order to determine the reinforcement stress and crack width. As a reference for the shear crack calculations, a wing structure (1 m strip) has been used which is part of a railway bridge located in Abisko. These calculations were done in order to investigate if the amount of shear reinforcement could be reduced and at the same time fulfill crack control demands in SLS. The bridge department at Tyréns AB concluded, according to a truss model, that the wing section should be reinforced with a amount of 14.1 cm2/m2 while our model showed that the crack width demand could be fulfilled with a equivalent amount of 9.82 cm2/m2, i.e. a reduction around 30%.

Page generated in 0.0951 seconds