• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 7
  • 4
  • Tagged with
  • 16
  • 16
  • 16
  • 14
  • 11
  • 11
  • 11
  • 11
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A floating-gate delta-sigma modulator

Pereira, Angelo W. D. 01 December 2003 (has links)
No description available.
2

Improved design techniques for low-voltage low-power switched-capacitor delta-sigma modulators

Grilo, Jorge 27 June 1997 (has links)
This dissertation investigates the constraints which arise when switched-capacitor (SC) delta-sigma modulators are designed for low-voltage operation, targeting also low power dissipation, and proposes methods of improving the performance and optimizing for low power dissipation. This is accomplished by identifying critical elements whose performance can lead to increased power dissipation, as well as the fundamental limitations of available analog circuit techniques. A prototype was designed and fabricated, which reflected these findings, and therefore exhibited good performance and nearly optimum power dissipation. One of the key performance parameters is the dc gain of the amplifier in the first stage; it should be high. This is necessary for high linearity and low quantization noise leakage. In low-voltage operation, it may become impractical to use conventional topologies employing cascoding techniques (e.g., folded-cascode) which provide high gain in one single stage. Rather, cascaded structures have to be used. The disadvantage of the latter is the necessity for frequency compensation which results in increased power dissipation. Hence, another objective of this work is to exploit techniques which compensate for the open-loop gain characteristic of the amplifier (dc gain and nonlinearity), thus permitting the utilization of single-stage low-gain topologies. Predictive correlated double sampling is one of such techniques and is analyzed in detail. / Graduation date: 1998
3

An IF-sampling switched capacitor complex lowpass sigma delta modulator with high image rejection.

January 2004 (has links)
by Cheng Wang-tung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (leaves 97-99). / Abstracts in English and Chinese. / Abstract --- p.i / 摘要 --- p.i / Acknowledgements --- p.ii / Table of Contents --- p.iii / List of Figures --- p.vii / List of Tables --- p.xi / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Motivations --- p.1 / Chapter 1.2 --- Objective --- p.4 / Chapter 1.3 --- Outline --- p.4 / Chapter Chapter 2 --- Quadrature ΣΔ Modulator for A/D Conversion --- p.5 / Chapter 2.1 --- Introduction --- p.5 / Chapter 2.2 --- Oversampling ΣΔ Converter --- p.6 / Chapter 2.3 --- Theory of ΣΔ modulation --- p.6 / Chapter 2.3.1 --- Quantization noise --- p.7 / Chapter 2.3.2 --- Oversampling --- p.8 / Chapter 2.3.3 --- Noise Shaping --- p.9 / Chapter 2.3.4 --- Performance Parameter --- p.11 / Chapter 2.3.5 --- Circuit Design of ΣΔ modulator --- p.11 / Chapter 2.3.6 --- Case Study --- p.12 / Chapter 2.3.6.1 --- Transfer Function --- p.12 / Chapter 2.3.6.2 --- Noise Analysis of First Order ΣΔ Modulator --- p.13 / Chapter 2.3.6.3 --- Circuit Level Implementation: --- p.14 / Chapter 2.4 --- Choice of Architecture: Lowpass or Bandpass? --- p.15 / Chapter 2.5 --- I/Q Modulation and Image Rejection --- p.18 / Chapter 2.5.1 --- Quadrature signal --- p.18 / Chapter 2.5.2 --- I/Q Modulation --- p.19 / Chapter 2.6 --- Image Rejection in SC ΣΔ Complex Topology --- p.21 / Chapter 2.6.1 --- High Level Simulation --- p.23 / Chapter 2.6.2 --- Discussion --- p.26 / Chapter 2.7 --- Summary --- p.27 / Chapter Chapter 3 --- Capacitor Sharing Architecture --- p.28 / Chapter 3.1 --- Introduction --- p.28 / Chapter 3.2 --- Proposed mismatch free SC complex ΣΔ Modulator --- p.28 / Chapter 3.2.1 --- Principle of Operation --- p.30 / Chapter 3.3 --- Justification of the Proposed Idea --- p.35 / Chapter 3.4 --- Summary --- p.37 / Chapter Chapter 4 --- Transistor Level Circuit Design --- p.39 / Chapter 4.1 --- Introduction --- p.39 / Chapter 4.2 --- Design of ΣΔ Modulator --- p.39 / Chapter 4.2.1 --- Specification of ΣΔ Modulator --- p.40 / Chapter 4.3 --- Design of Operational Amplifier --- p.45 / Chapter 4.3.1 --- Folded-cascode Operational Amplifier --- p.45 / Chapter 4.3.2 --- Common Mode feedback --- p.47 / Chapter 4.3.3 --- Bias Circuit --- p.49 / Chapter 4.3.4 --- Simulation Results --- p.50 / Chapter 4.4 --- Design of Comparator --- p.54 / Chapter 4.4.1 --- Regenerative Feedback Comparator --- p.54 / Chapter 4.4.2 --- Simulation Results --- p.55 / Chapter 4.5 --- Design of Clock Generator --- p.56 / Chapter 4.5.1 --- Non-Overlapping clock generation --- p.57 / Chapter 4.5.2 --- Simulation Results --- p.58 / Chapter 4.6 --- Simulation Results of ΣΔ Modulator --- p.59 / Chapter 4.7 --- Simulation Results --- p.61 / Chapter 4.7.1 --- Proposed Architecture --- p.62 / Chapter 4.7.2 --- Traditional Architecture --- p.62 / Chapter 4.8 --- Summary --- p.63 / Chapter Chapter 5 --- Layout Considerations and Post-Layout Simulation --- p.65 / Chapter 5.1 --- Introduction --- p.65 / Chapter 5.2 --- Common-Centroid Structure --- p.65 / Chapter 5.3 --- Shielding Technique --- p.67 / Chapter 5.3.1 --- Shielding of device by substrate --- p.67 / Chapter 5.3.2 --- Floor Planning --- p.68 / Chapter 5.4 --- Layout of Power Rail --- p.69 / Chapter 5.5 --- Layout and Post-Layout Simulation of OpAmp --- p.70 / Chapter 5.6 --- Layout and Post-Layout Simulation --- p.74 / Chapter 5.6.1 --- Proposed Architecture --- p.75 / Chapter 5.6.2 --- Traditional Architecture --- p.77 / Chapter 5.7 --- Summary --- p.79 / Chapter Chapter 6 --- Measurement Results --- p.81 / Chapter 6.1 --- Introduction --- p.81 / Chapter 6.2 --- Considerations of PCB Design --- p.82 / Chapter 6.3 --- Measurement Setup --- p.83 / Chapter 6.4 --- Measurement Results --- p.85 / Chapter 6.4.1 --- Measurement Results of Proposed Architecture --- p.85 / Chapter 6.5 --- Summary --- p.92 / Chapter Chapter 7 --- Conclusion --- p.95 / Chapter 7.1 --- Conclusion --- p.95 / Chapter 7.2 --- Future Works --- p.96 / References --- p.97 / Appendix --- p.100 / Chapter A.1 --- Publications --- p.100 / Chapter A.2 --- Schematic of proposed front end --- p.101 / Chapter A.3 --- Schematic of SC ΣΔ modulator --- p.102 / Chapter A.4 --- Schematic of the folded-cascode amplifier --- p.103 / Chapter A.5 --- Schematic of biasing circuit --- p.104 / Chapter A.6 --- Schematic of preamplifier in comparator --- p.105 / Chapter A.7 --- Schematic of latched part in comparator --- p.106 / Chapter A.8 --- Schematic of the clock generator --- p.107
4

Fast opamp-free delta sigma modulator

Thomas, Daniel E. 23 August 2001 (has links)
Switched-capacitor (SC) circuits are commonly used for analog signal processing because they can be used to realize precision filters and data converters on an integrated circuit (IC). However, for high speed applications SC circuit operating speeds are limited by the internally-compensated opamps found in SC integrators, a common building block of these circuits. This thesis studies gain stages that eliminate the internal compensation, thus allowing the SC circuits to operate at significantly higher operating speeds. An inverter-based SC integrator is presented. The proposed SC integrator is built with a pseudo-differential structure to improve its rejection of common-mode noise, such as charge injection and clock feedthrough. The proposed integrator also incorporates correlated double sampling (CDS) to boost its effective DC gain. Clock-boosting and switch bootstrapping techniques are not used in the proposed circuit, even though it uses a low supply voltage. To verify the speed advantage of the proposed circuit, a high speed delta sigma (Δ∑) modulator was designed in a 1.8V, 0.18μm CMOS technology. The designed Δ∑ modulator operates at a clock frequency of 500MHz. Circuit implementation and layout floorplan are described. The design is based on MATLAB and SpectreS simulations. / Graduation date: 2002
5

The design of delta-sigma modulators for multi-standard RF receivers

Liu, Mingliang 09 June 2003 (has links)
The transition from second-generation (2G) to third-generation (3G) wireless cellular and cordless telephone systems requires multi-standard adaptability in a single RF receiver equipment. An important answer to this request is the use of Delta-Sigma modulators for IF-to-baseband conversion, which will satisfy the dynamic range requirements for digital signal processing, and at the same time, add adaptability and programmability to the characteristics of a RF receiver. This thesis addresses the issues of designing a Delta-Sigma modulator for a multi-standard wireless receiver. A single-loop third-order modulator topology suitable for low power and high integration multi-standard receiver design is proposed. The trade-offs in the modulator design are also presented and explained. The modulator, which has been implemented as a part of a monolithic receiver chip, will be fabricated in a standard 0.35-��m CMOS process. The post-layout simulation results have verified the outcomes of system analysis. / Graduation date: 2004
6

System oriented delta sigma analog-to-digital modulator design for ultra high precisoin data acquisition applications

Yang, Yuqing, Ph. D. 05 October 2012 (has links)
As high precision data acquisition systems continue to improve their performance and power efficiency to migrate into portable devices, increasing demands are placed on the performance and power efficiency of the analog-to-digital conversion modulator. On the other hand, analog-to-digital modulator performance is largely limited by several major noise sources including thermal noise, flicker noise, quantization noise leakage and internal analog and digital coupling noise. Large power consumption and die area are normally required to suppress the above noise energies, which are the major challenges to achieve power efficiency and cost targets for modern day high precision converter design. The main goal of this work is to study various approaches and then propose and validate the most suitable topology to achieve the desired performance and power efficiency specifications, up to 100 kHz bandwidth with 16-21 bits of resolution. This work will first study various analog-to-digital conversion architectures ranging from Nyquist converters such as flash, pipeline, to the delta sigma architecture. Advantages and limitations of each approach will be compared to develop the criteria for the optimal modulator architecture. Second, this work will study analog sub-circuit blocks such as opamp, comparator and reference voltage generator, to compare the advantages and limitations of various design approaches to develop the criteria for the optimal analog sub circuit design. Third, this work will study noise contributions from various sources such as thermal noise, flicker noise and coupling noise, to explore alternative power and die area efficient approaches to suppress the noise. Finally, a new topology will be proposed to meet all above criteria and adopt the new noise suppression concepts, and will be demonstrated to be the optimal approach. The main difference between this work from previous ones is that current work places emphasis on the integration of the modulator architecture design and analog sub-circuit block research efforts. A high performance stereo analog-to-digital modulator is designed based on the new approach and manufactured in silicon. The chip is measured in the lab and the measurement results reported in the dissertation. / text
7

Design techniques for low voltage wideband delta-sigma modulator. / CUHK electronic theses & dissertations collection / Digital dissertation consortium

January 2010 (has links)
Finally, another new 0.5V fully differential wideband amplifier, which can be used in the wideband modulator, has been proposed. The gate-input two-stage amplifier employs a DC common-mode feedback circuit that uses a Miller-amplified capacitor for its frequency compensation. With the proposed technique, the power consumption of the low-voltage amplifier is drastically reduced. / Furthermore, a new dynamic CM level shifting technique for low-voltage CT delta-sigma modulators that employ a return-to-open feedback DAC is reported in the thesis. The technique maintains a stable CM level at the amplifier's inputs for this type of modulators. Simulation results show that it improves the modulator's SNDR by 11%. / In this thesis, we present research works on developing a low-voltage delta-sigma modulator with a wide signal bandwidth. Specifically, a 0.5V complex low-pass continuous-time (CT) third-order delta-sigma modulator that has a single-sided signal bandwidth of 1MHz, targeting for application in Bluetooth receivers, is presented without using any internal voltage boosting techniques which are potentially harmful to the reliability of the device. The wide bandwidth of the modulator at this low supply voltage is enabled by a special common-mode (CM) level arrangement in the system level and by new low-voltage amplifies. Realized in a 0.13mum CMOS process the proposed modulator achieves a 61.9-dB peak signal-to-noise-and-distortion ratio at the nominal supply of 0.5V with 3.4mW consumption, and occupies an active area of 0.9mm2. The modulator achieves the best figure-of-merit among its class. / The development of low-voltage design techniques for analog circuits has recently received a lot of attention due to the continuous shrinking of the supply voltage in modern CMOS technologies, which is projected to reduce to 0.5V for low power applications within ten years in the International Technology Roadmap for Semiconductor. This thesis focuses on developing circuit techniques for low-voltage delta-sigma modulator, a functional block that is widely used in mixed-signal integrated circuits. Several delta-sigma modulators operating at supply voltages below 0.9V have been reported in the open literature. However, none of them supports a signal bandwidth wider than 100kHz with a reasonable performance. / He, Xiaoyong. / Adviser: Kong Pang Pun. / Source: Dissertation Abstracts International, Volume: 72-01, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 104-111). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
8

High-performance delta-sigma analog-to-digital converters

da Silva, Jose Barreiro 14 July 2004 (has links)
Graduation date: 2005
9

A study of basic building blocks of analog-to-digital delta-sigma modulators

Guo, Yuhua 09 January 2004 (has links)
In this thesis, a novel Direct-Charge-Transfer (DCT) integrator structure is proposed, which can settle much faster than regular switch-capacitor integrators. A new Spread-Spectrum Dynamic Element Matching (SS-DEM) algorithm is also introduced, which can effectively spread or shape the nonlinearity error of multi-bit DAC in the feedback path, thus improve the SNDR and THD performance of overall delta-sigma modulators. A three-bit quantizer design example is presented, which is embedded in a MASH2-0 structure delta-sigma modulator prototype and has been fabricated in AMI CMOS 1.5μm technology. Testing results indicate this quantizer works well. / Graduation date: 2004
10

Systems Engineering for Silicon Photonic Devices

Zhu, Xiaoliang January 2015 (has links)
The increasing integration of digital information with our daily lives has led to the rise of big data, cloud computing, and the internet of things. The growth in these categories will lead to an exponential increase in the required capacity for data centers and high performance computation. Meanwhile, due to bottlenecks in data access caused by the limited energy and bandwidth scalability of electrical interconnects, computational speedup can no longer scale with demand. A better solution is necessary in order to increase computational performance and reduce the carbon footprint of our digital future. People have long thought of photonic interconnects, which can offer higher bandwidth, greater energy efficiency, and orders-of-magnitude distance scalability compared to electrical interconnects, as a solution to the data access bottleneck in chip, board, and datacenter scale networks. Over the past three decades we have seen impressive growth of photonic technology from theoretical predictions to high-performance commercially available devices. However, the dream of an all-optical interconnection network for use in CPU, Memory, and rack-to-rack datacenter interconnects is not yet realized. Many challenges and obstacles still have to be addressed. This work investigates these challenges and describe some of the ways to overcome them. First we will first examine the pattern sensitivity of microring modulators, which are likely to be found as the first element in an optical interconnect. My work will illustrate the advantage of using depletion mode modulators compared to injection mode modulators as the number of consecutive symbols in the data pattern increases. Next we will look at the problem of thermal initialization for microring demultiplexers near the output of the optical interconnect. My work demonstrates the fastest achieved initialization speed to-date for a microring based demultiplexer. I will also explore an thermal initialization and control method for microrings based on temperature measurement using a pn-junction. Finally, we will look at how to control and initialize microring and MZI based optical switch fabrics, which is the second element found in a optical interconnect. Work here will show the possibility of switching high-speed WDM datastreams through microring based switches, as well as methods to deal with the complexities inherent in control and initialization of high-radix switch topologies. Through these demonstrations I hope to show that the challenges facing optical interconnects, although very real, are surmountable using reasonable engineering efforts.

Page generated in 0.1057 seconds